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ABSTRACT: 

Classical shape from shading (SFS) is based on the 

analysis of the intensity values of a single digital image in 

order to derive three dimensional information of the 

depicted scene. It involves the orthographic projection 

for the transformation from object to image space and 

has been successfully applied to weakly textured images. 

In general the illumination conditions must be known, 

Lambertian reflection and constant albedo must be as­

sumed for the object surface, and only surface slopes can 

be determined. Digital image matching for photogram­

metric processing on the other hand needs at least two 

images of the same scene taken from different view 

points and the images must be well textured. Therefore, 

the two methods are complementary to each other, and 

a combined model should yield better results than any 

of the two separate ones. 

In this paper a new global approach is presented inte­

grating digital image matching and multi image SFS in 

object space. In a least squares adjustment the unknowns 

(geometric and radiometric parameters of the object 

surface) are estimated from the pixel intensity values and 

control information. The perspective projection is used 

for the transformation from object to image space. 

The approach is investigated using synthetic images. The 

main results of this study are the following: 

- Heights of a digital terrain model (DTM) or a digital 

surface model (DSM) instead of surface slopes can 

be calculated directly using multi image SFS alone 

or the combined approach (in this paper the term 

"DTM" den~tes a classical DTM as well as a DSM). 

- There is no need for conjugate points in the multi 

image SFS approach. This is especially important, 
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since in weakly textured images the correspondence 

problem is extremely hard to solve due to the lack of 

large image intensity gradients. 

- If variable albedo is present in parts of the object 

surface only the combined approach yields correct 

results. Multi image SFS and digital image matching 

alone fail in this case. 

Key Words: digital photogrammetry, shape from sha­

ding, image matching, image analysis, DTM/DSM, theo­

ry 

1. INTRODUCTION 

One of the main difficulties of digital photogrammetry 

presents the automatic measurement of image coordina­

tes of conjugate points for the computation of object 

space coordinates. This problem is referred to as "digital 

image matching". It has been a focus of research for 

nearly thirty years. Early work goes back to Sharp et al. 

/1965/. During the years many algorithms have been 

suggested for this task. The state-of-the-art of digital 

image matching is the use of a global, multi image, object 

based approach incorporating a hierarchical procedure 

to provide initial values for the unknown parameters. 

While feature based matching is faster and seems to be 

more robust, least squares matching has been found to 

be more accurate. However, it can be observed, that all 

algorithms, regardless of their origin in detail, heavily 

rely on the presence of image texture. In the absence of 

sufficient image intensity gradients, every matching al­

gorithm will fail to produce correct results. 

The rarity of high resolution stereoscopic images of 

planetary surfaces as well as research in computer vision 



have prompted interest in developing algorithms for 

translating single digital images into three dimensional 

information of the object surface. These algorithms di­

rectly relate an image intensity value to the inclination of 

the corresponding surface patch relative to the direction 

of illumination. Such methods are called 'shape from 

shading' or 'photoclinometry' and have been pioneered 

by Rindfleisch /1966/ and Horn /1970/. While photocli­
nometry has been developed for astro-geological re­
search and most applications deal with the reconstruc­
tion of planetary terrain profiles /e.g. Davis, Sonderblom 
1984/, SFS is a research direction within computer vision 

and focuses on the reconstruction of surfaces /Horn, 

Brooks 1989/. Both methods are referred to together in 

this paper and are abbreviated with SFS. As a conse­

quence of being extremely sensitive to changes in incli­

nation, SFS can detect small terrain undulations that are 

far below the sensitivity of photogrammetry. On the 

other hand, SFS relies on the correctness of various 

assumptions concerning the illumination and the light 

reflection of the object surface. Furthermore, in classical 

SFS, only surface slopes instead of heights can be deri­

ved. A collection of papers on this topic and an excellent 

bibliography are contained in Horn, Brooks /1989/. 

Since the requirements for digital imagery, in order to 

be used for digital image matching or for SFS, are more 

or less complementary to each other, a combination of 

the two methods should yield reliable results also in 

image regions, where one of the two methods employed 

independently fails. Such a combination was already 

suggested by Barnard, Fischler /1982/. It is also in line 

with the 'cooperative methods paradigm' of computer 

vision !McKeown 1991/, which basically states that the 

combined use of different methods for the same aim 

improves the results. In this context it is interesting to 

note that SFS also has its role in the human capability of 

depth perception. Following the work of Julesz /1971/ 

and Marr /1982/ it was commonly believed that humans 

rely only on image features, especially on zero crossings 

of the second derivative of the image intensity function, 

for binocular depth perception. Only recently it was 

shown that binocular SFS alone provides unambiguous 

depth clues as well IMallot 1991/. 

In this paper a new global approach is presented and 

investigated integrating digital image matching and mul­

ti image SFS in object space. In a least squares adjust­

ment the unknowns (geometric and radiometric para-
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meters of the object surface) are estimated from the 

pixel intensity values and control information. The per­

spective projection is used for the transformation from 

object to image space. Chapter 2 describes a simple 

model for the generation of a digital image. In chapter 3 

a multi image object based least squares matching ap­

proach developed over the last years is shortly reviewed. 

Chapter 4 contains an introduction to SFS. In chapter 5 
the integration of digital image matching and multi 
image SFS is presented. Experimental results using syn­
thetic images are contained in chapter 6. In the last 
chapter conclusions and an outlook for further research 

are given. 

2. A SIMPLE MODEL FOR THE GENERATION OF 

A DIGITAL IMAGE 

In this chapter a model for the generation of a digital 

image taken with an optical sensor is shortly reviewed, 

since the resulting equations will be needed in the remai­

ning part of the paper (see Horn /1986/ for more details). 

The image irradiance Ei (x ,y ) at point P' (x ,y ) in the 

image plane is formed by light reflected at a point 

P (X , Y, Z) on the object surface. For this imaging 

process the well known camera equation (1) holds (for 

the following derivations see also figure 1): 

x,y 

X,Y,Z 

d 

f 
a 

JT d 2 4 "4 (7) cos a r L (X , Y) 

image coordinates 

object coordinates 

image irradiance 

diameter of optical lens 

focal length of optical lens 

angle between optical axis and the 

ray through P and P' 

(1) 

r degree of atmospheric transmission 

V unit vector in the viewing direction at 

P(X,Y,Z) 

L (X , Y) scene radiance in the viewing direc­

tion v 

In general, L depends on the illumination (number and 

size of light sources, direction and radiance of illumina­

tion) and on the properties of surface reflection, which 

in turn depend on the surface material, its microstructu-
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Figure 1: Generation of a digital image 

re, the existing moisture and other factors. The surface 

reflectance properties are normally expressed in the so 

called bidirectional reflectance distribution function 
(BRDF). 

For reasons of simplicity one distant point light source 

illuminating the object surface with constant radiance 

from the direction s is introduced only. Also, the object 

surface is assumed to look equally bright from every 

viewing direction. This assumption is equivalent to Lam­

bertian reflection, except that light absorption at the 

object surface is allowed here. The ratio between inco­

ming and reflected radiant flux - a value between 0 and 

1 - is called the albedo and is denoted by p (X, Y). In 

this case L can be written as 

1 ~s W 
L == Ji Es P (X, Y) I ~ I 

Es (X , Y) scene irradiance (constant) 

p (X, Y) albedo of the object surface 
-s unit vector in the direction of illumi­

nation at P ( X , Y, Z ) 
-n vector in the direction of the object 

surface normal at P( X, Y, Z ) 

Combining equations (1) and (2) yields: 

Ei(x,Y) 
cos4a d 2 ~ S 

== -4- (7) i Es p (X, Y) I ~ I 
(3) 
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In the sensor an image intensity value g ( x ,y) - in 

general an integer value between 0 and 255 - is recorded 

rather than the image irradiance Ej (x ,y). g (x ,y) is 

proportional to E; (x ,y ) : 

g (x ,y) = k Ei (x ,y) (4) 

g ( x ,y ) image intensity value at P' (x ,y ) 

k rescaling constant 

All constants of equations (3) and (4) can be combined 

with the albedo into the so called object intensity value 

G(X,Y): 

cos4a d 2 (5) 
G (X, Y) = k -4- (7) i Es p (X, Y) 

G (X, Y) object intensity value at P (X , Y, Z ) 

Substituting equations (3) and (5) into (4) yields: 

n s 
g(x,y) = G(X,Y) I~I 

(6) 

3. DIGITAL IMAGE MATCHING 

The algorithms for digital image matching are usually 

classified into three groups: 

- image matching using signal processing algorithms 

(also called area based image matching), 

- feature based image matching, 

- relational image matching. 

In the first group a function of the intensity value diffe­

rences between selected windows of the different images 

is minimized. The maximization of the well known cross 

correlation coefficient !Hannah 1989/ as well as the least 

squares matching algorithms !Forstner 1982; Griin 1985; 

Rosenholm 1986/ and phase shift methods !Ehlers 1983/ 

all belong to this first group. The algorithms of the 

second group search for predefined features (points, 

edges, lines, regions) independently in the images /Bar­

nard, Thompson 1980/. Low level image processing al­

gorithms are employed for the selection of the features. 

Based on the output of these algorithms a list of possibly 

corresponding features is established. This list still con­

tains a number of gross errors and ambiguities and is 

thinned out using for instance robust estimation or dy­

namic programming. The famous zero-crossing algo-



rithm /Marr, Poggio 1979/ is one of the most well known 
examples of this group, others can be found in Forstner 

/1986/ and Ackermann, Hahn /1991/. The third group 

consists of approaches which, besides the features men­

tioned above, use relations between these features ("pa­

rallel to", "to the right of', etc.; for more details see 

Shapiro, Haralick /1987/ and Boyer, Kak /1988/). 

Following the line of thought of chapter 2, equation (6) 

can be employed to design an object based multi image 

matching algorithm. This algorithm has been developed 

as a generalization of the least squares matching me­

thods in the last years !Ebner et al.1987; Ebner, Heipke 

1988/. Similar concepts have been published inde­
pendently IWrobel1987; Helava 1988/. A detailed des­
cription of this matching algorithm and an evaluation 

using synthetic and real imagery can be found in Heipke 

/1990, 1991/. The outline of this algorithm is shortly 
reviewed here. 

First, a geometric and a radiometric model in object 

space are introduced.The geometric model consists of a 

grid DTM. The grid is defined in the XY -plane of the 

object surface with grid nodes X k , Y; and grid heights 

Z (Xk , Y; ) = Zk,/. The mesh size depends on the 

roughness of the terrain. A height Z (X, Y) at an arbi­

trary point is interpolated from the neighbouring grid 

heights, e.g. by bilinear interpolation. In the radiometric 

model object surface elements of constant size are defi­

ned within each grid mesh. The size is chosen approxi­

mately equal to the pixel size multiplied by the average 

image scale factor. An object intensity value G (X, Y) 

is assigned to each object surface element. The albedo 

p (X, Y) of the object surface is allowed to be variable 

and so is G (X, Y) (see equation (5». The object sur­

face elements can be projected into the different images 

using the well known collinearity equations. Sub­

sequently image intensity values at the corresponding 

locations in pixel space can be resampled from the ori­

ginal pixel intensity values (see also figure 2). 

In the following, the grid heights Zk,l, the parameters p 

for the exterior orientation of the images, and the object 

intensity values G (X, Y) of the object surface elements 

are treated as unknowns. They are estimated directly 

from the observationsg(x,y) and control information in 

a least squares adjustment. Thus, g(x,y) depends on 

Zk,l and on p. The surface normal vector n is a function 

of the object surface inclination, and therefore also a 
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Figure 2: Transformation from object to image space 

function of Zk,l. The direction of illumination sis allowed 

to vary from image to image. For each object surface 

element, as many valuesg(x, y) can be computed as there 

are images, and as many equations of the following type 

can be formulated: 

= G(X Y) n(Zk,I)~· 
, I n( Zk,/) I 

j = 1, ... ,n 

& (Xj (Zk,I,Pj ) ,Yj (Zk,J ,Pj ) ) 

image intensity value, observation 

from imagej 

j image index 

(7) 

Zk,l unknown grid heights used to interpo­

lateZ (X, Y) 

pj unknown parameters of exterior 

orientation of image j 

G (X, Y) unknown object intensity value 

n( Zk,l ) vector in the direction of the object 

surface normal 
-
Sj 

n 

unit vector in the direction of illumi­
nation for image j 

number of available images 

In optical systems the decreasing image irradiance away 

from the principal point due to the term cos4
a (see 

equations (1), (3) and (5» is normally compensated for 

using more than one lens and special coating. Therefore, 

this effect does not need to be modeled here. 

For one object surface element the object intensity value 

G, and thus the product of all values influencing G (see 



equation (5)), must remain constant. In order to partly 

overcome this limitation, as well as to compensate for 

surface reflectance properties different from the assu­

med model, a linear radiometric function accounting for 

brightness and contrast differences of the various images 

can be introduced. The resulting system of equations (7) 

is then completed by adding equations for control infor­

mation with appropriate standard deviations and rewrit­

ten as a system of observation equations. In the most 

simple case the weight matrix for the intensity value 

observations is represented by the identity matrix. Since 

the observation equations are nonlinear in the un­

knowns, the solution of the least squares adjustment is 

found iteratively. 

4. SHAPE FROM SHADING 

Classical SFS refers to the problem of reconstructing the 

surface of an object, given a single digital image by 

relating the image intensity values directly to surface 

inclinations relative to the direction of illumination. The­

se inclinations are then integrated to produce a geome­

tric model of the object surface. For the transformation 

from object to image space the orthographic projection 

is used. The parameters of exterior orientation are assu­

med to be known. 

The basic equation of SFS is derived from equation (6) 

by assigning a constant known object intensity value G 

to the object surface. Looking at equation (5) this is 

equivalent to assuming a constant known albedo p, and 

the other parameters must have calibrated values. 

Throughout the rest of this paper constant (changing) 

object intensity values are assumed to result from con­

stant (changing) albedo only. 

The surface normal vector Ii can be expressed in terms 

of the object surface inclination: 

Ii T = [-az/ ax , - az/ ay , 1] = [- Zx , - Zy, 1 ] 

(8) 

Substituting the unit vector in the direction of illumina­

tion as S T = [S1 , S2 , S3 ], equation (6) can be written as 

g (x ,y) G - ZX S1 - Zy S2 + S3 

";Zx 2+Zy2+1 

(9) 

There are two unknowns, namely Zx andZy, but only one 

observation, namely g (x ,y ), for each point in object 

space. Therefore, there exists an infinitive number of 

solutions to equation (9). This is the fundamental inde­

terminability of SFS. It can be overcome by working in 

surface proftles !Horn 1970; Davis, Sonderblom 1984/ or 

by introducing smoothness terms for the object surface 

/Strat 1979; Ikeuchi, Horn 1981; Horn, Brooks 1986/. 

Some of the rather strong assumptions of SFS can be 

dropped, if more than one image is used simultaneously. 

In binocular or in multi image SFS /Grimson 1984/ ima­

ges taken from different positions are analyzed. The 

correspondence problem of image matching (there is in 

general a need for conjugate points) must be overcome. 

This is particularly complicated for constant albedo due 

to the lack of intensity gradients. A solution for the 

estimation of the parameters of exterior orientation is 

given in de Graaf et al. /1990/. 

In the method of photometric stereo /Woodham 1978; 

Lee, Brady 1991/ images taken from the same position 

under varying illumination directions are used. Thus, the 

correspondence problem becomes trivial. Using two 

images a unique determination of Zx and Zyis possible, 

the use of three images allows in addition to solve for 

variable and unknown albedo. 

There are also ways to compute object surface heights 

directly using SFS. Wrobel /1989/ suggests to introduce 

a discrete geometric model in object space similar to the 

one described in chapter 3 and to solve for the DTM 

heights directly. Leclerc, Bobick /1991/ present a solu­

tion along the same lines. Horn /1990/ solves for surface 

inclination and height simultaneously using coupled 

partial differential equations. An implementation of this 

approach is described in Szelinski /1991/. Thomas et aI. 
/1991/ investigate an approach combining SFS and ste­

reo radargrammetry to produce DTM from multiple 

radar images. Kim, Burger /1991/ use a point light source 

located near the object surface. The resulting variations 

of the scene irradiance are used to compute surface 

heights. 
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5. INTEGRATION OF DIGITAL IMAGE 

MATCHING AND SFS 

An algorithm for the synthesis of digital image matching 

and SFS is presented in this chapter. It combines digital 

image matching as outlined in chapter 3 and multi image 

SFS from the previous chapter. Object heights instead 

of slopes are calculated from two or more images with 

different illumination in a least squares adjustment. The 

problem of correspondence is circumvented in this ap­

proach. 

Looking again at equation (7), but introducing known 

exterior orientation parameters, the image intensity 

value g ( x ,Y ) can be written as 

= G (X Y) n ( Zk, I) Sj 
, In (Zk,I) I 

(10) 

The Zk,l and the object surface intensity G (X, Y) are 

the only unknowns in equation (10). 

If for the whole object surface the assumption of con­

stant albedo is fulfilled, equation (10) describes multi 

image SFS using the perspective instead of the orthogra­

phic projection for the transformation from object to 

image space. However, it is not necessary to use corres­

ponding points, because all the object surface elements 

are constrained to lie on the surface defined by the 

neighbouring grid heights Zk,l. This will also be shown 

experimentally in the next chapter. 

If on the other hand variable albedo (texture) is present 

on the object surface, equation (10) is equivalent to 

equation (7) and digital image matching as outlined in 

chapter 3 can be used. 

Let us now assume, that it is known a priori which parts 

of the object surface have constant and which parts have 

variable albedo. This knowledge can come from image 

preprocessing or from surface cover information. The 

related DTM meshes can then be processed according­

ly. In equations (11) and (12) A denotes a constant, and 

G (X , Y) a variable object intensity value. Two groups 

of observation equations follow: 
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(11) 
residual of observation equation re­

sulting from image j 

A constant object intensity value 

for DTM meshes with constant albedo and 

n(Zk,l) ~ 
Vj (xj,Yj) = G (X, Y) In (Zk,I) I 

- & (Xj (Zk,I) ,Yj (Zk,l) ) 

for DTM meshes with variable albedo. 

(12) 

In a least squares adjustment the unknown grid heights 

Zk,/ and the unknown object intensity values A and 

G(X, Y) can be computed from the observed image 

intensity values g(x,y). Since the observation equations 

are nonlinear in the unknowns, the solution must be 

found iteratively. It should be pointed out that in line 

with photometric stereo A can only be solved for, if a 

minimum of three images is used. Otherwise A must be 

known a priori. 

6. EXPERIMENTAL RESULTS 

Some experimental results for the integration of digital 

image matching and multi image SFS are presented in 

this chapter in order to demonstrate the potential of the 

described approach. They have all been conducted using 

two synthetic images of ~ sphere taken from different 

positions and under different illumination directions. A 

horizontal plane is introduced as an initial DTM and the 

sphere is reconstructed from the two images. The idea 

is to show that multi image SFS yields good results, if the 

assumption of constant known albedo is correct. If this 

assumption is violated in parts of the object surface, 

there are three possibilities to proceed: 

- regard the variable unknown albedo in these parts 

as noise and still use a SFS approach assuming 

constant known albedo, 

- perform digital image matching instead under the 

wrong assumption, that enough large intensity gra­

dients are present, 



- use the combined approach described in the pre­
vious chapter. 

It is shown that only the last possibility yields correct 

results under the given circumstances. 

6.1. Input images 

The upper part of a sphere with a radius of 36 m was 

approximated with a DTM of 64 * 64 meshes by interpo­

lating the grid heights at a mesh size of 1 m from the 
sphere. From this DTM two shaded relief images were 
generated using two distant point light sources with 
identical radiance, illumination directions with equal 
zenith distance and 90 degrees difference in azimuth, 

Lambertian reflection, a constant predefmed albedo at 

the object surface, and 8 * 8 object surface elements for 
each DTM mesh: These images are called OPI and OP2 
respectively. In order to simulate variable albedo for 

some parts of the object surface, a small number of 
randomly distributed DTM meshes was chosen and the 

intensity values inside these meshes were replaced by 
random noise. The same noise was applied to OPI and 
OP2. The two resulting images are called OP3 and OP4. 
All four images can be seen in figure 3. 

Figure 3: From left to right, top to bottom: OPI to OP4 

Next, two camera stations were defmed (for the position 

of the sphere relative to these stations see figure 4). 

Using a ray tracing algorithm, OPI and OP3 were pro­

jected into the image plane of station 1, while OP2 and 

OP4 were projected into that of station 2, always taking 
the DTM into account for the third dimension. The 
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Z = 1500m : 

I 
I 
I 
I 
I 
I 
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I 
I 
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I 
I 
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460m : 
I 
I 
I 
I 
I 
I 
I 
I 

Camera station 1 ! 
I 

Z = 1500m ! 

~-----------~-~-----------------~ 
Sphere 

Z = -11, ... , 25 m 

Figure 4: Setup for the generation of IMA 1 to IMA 4 

Figure 5: From left to right, top to bottom: IMAI to 

IMA4 

resulting images are called lMAl, IMA2, IMA3, and 

IMA4 respectively. They can be seen in figure 5. Thus 

two sets of synthetic images were generated from the 

sphere, one set (IMAI and IMA2) with constant known 

albedo, the other one (IMA3 and IMA4) with areas of 

constant known and of variable unknown albedo. 

6.2. The experiments 

A number of experiments has been conducted using two 

synthetic images at each run. The inner 32 * 32 DTM 

meshes were processed only in order to avoid occlusions. 
In the meshes of constant albedo, the known albedo 



value was introduced. The directions of illumination 

used for the creation of the shaded relief images were 

introduced as constant values, as well as the parameters 

of exterior orientation chosen for IMA1 to lMA4. A 

horizontal plane situated tangentially to the sphere was 

used to provide initial values for the DTM heights. The 

maximum difference between true and initial height va­

lues, which can be found in the corners of the 32 * 32 

DTM meshes, amounts to 8 m, equivalent to approxima­

tely 20 pixels in image space. All experiments were 

stopped when the changes to the unknown heights from 

one iteration to the next fell below a predefmed thres­

hold of 0.01 m (0.025 pixels in image space). 

The following experiments were conducted: 

1) Multi image SFS for the whole object surface with 

the correct assumption of constant known albedo 

and the corresponding images IMA1 and IMA2. 

2) ditto, but in contrast to experiment 1 without using 

conjugate points. The object surface elements were 

alternately projected into IMA1 or IMA2. 

3) Multi image SFS for the whole object surface with 

the assumption of constant known albedo, but using 

the images IMA3 and IMA4 corrupted by noise. 

4) Digital image matching for the whole object surface 

using the images IMA3 and IMA4 corrupted by 

noise. 

5) The combined approach described in chapter 5 

using the images lMA3 and IMA4 corrupted by 

noise. Correct albedo assumptions (variable un­

known albedo for the DTM meshes corrupted by 

noise, constant known albedo for the rest of the 

object surface) were introduced. 

6.3. Results 

The results of the 5 experiments can be seen in table 1. 

The experiment number, the number of iterations for 

convergence, the mean deviation d and the RMS error 

fl of the differences between the computed and the true 

DTM heights is given. According to the nature of the 

experiments the shown values should rather be interpre­

ted as trends. They are not meant to be accuracymeasu­

res as such. 

The following conclusions can be drawn from these 

results: 
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No. of expe- No. of itera-
d 

riment tions 
f.1 

- - m m 

1 20 0.01 0.02 

2 20 0.00 0.02 

3 28 -1.2 1.3 

4 no convergence 

5 30 0.01 0.03 

Table 1: Results of the experiments 

- multi image SFS is useful to compute directly height 

values of the object surface, if the assumption of 

constant known albedo is correct (experiment 1), 

- in this case there is no need for conjugate points, if 

the described geometric object model is introduced 

(experiment 2), 

- multi image SFS can converge to local minima and 

produces incorrect results, if variable unknown al­

bedo is present in parts of the object surface (expe,­

riment 3), 

- in this case digital image matching does not yield 

correct results either, because the intensity gra­

dients are too small in most meshes (experiment 4), 

- if variable unknown albedo is present in parts of the 

object surface, only using the combined approach a 

correct result is obtained (experiment 5 as com­

pared to experiments 3 and 4). 

7. CONCLUSIONS AND OUTLOOK 

The presented approach for the integration of digital 

image matching and multi image-SFS in object space has 

been shown to yield superior results than any of the two 

methods employed alone. However, only synthetic ima­

ges have been used, and a number of implicitly or expli­

citly stated assumptions have to be fulfilled. Also, the 

question of existence and uniqueness - a wide field of 

investigation especially in SFS - has not been touched. 

Therefore, the reported results must be verified, and the 

approach robustified in order to be used in practical 

environments. 

Some directions for further research shall be pointed 

out: 

- Point light sources near the object rather than far 

away /Kim, Burger 1991/ or extended light sources 

can be introduced. 



- The direction of illumination does not have to be 

known, but may be estimated in the least squares 

adjustment /Leclerc, Bobick 1991/. In the linearisa­

tion of equations (11) and (12) the corresponding 

terms have to be taken into account. 

- More than one light source can be present for one 

image. The scene irradiance is then simply a combi­

nation of the individual irradiances. 

- A BRDF more complicated than Lambertian reflec­

tion can be incorporated Ide Graaf et al. 1990/. 

However, the BRDF must be analytically given. 

- Also the parameters of exterior orientation of the 

images can be considered unknown and can be esti­

mated in the least squares adjustment, if an appro­

priate BRDF is introduced. 

- The sensor must be carefully calibrated in terms of 

geometric and radiometric distortion. 

Other generalisations, for example time variable scene 

irradiance and BRDF for multi image acquisition, non­

opaque object surfaces, occlusions, mutual reflection, 

and breaklines in the object surface are more difficult to 

model. 

Practical applications of the presented approach are 

possible in close range and in natural environments. 

However, care has to be taken for the latter case to 

ensure that the necessary variations in the direction of 

illumination can be matched with those available from 

the sun. 

In summary, the combination of photogrammetric algo­

rithms and those from computer vision must be seen as 

very important in order to automate vision tasks. 

ACSM 

ASPRS 

BuL 

CVGIP 
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