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Abstract 

Extracting features from digital images is the first 
goal of almost all image understanding systems. It is 
also difficult to solve because of the presence of noises 
and various photometric anomalies. Another difficulty 
for it is the fact that features and objects are reco­
gnized by using not only the information contained 
in image data but also our a priori knowledge about 
the semantics of the world. Thus, a feature extrac­
tion system should be robust to reduce the influence 
of noises and flexible to integrate different levels of 
knowledge for a wide range of data. In this paper, 
a two-stage paradigm for feature extraction is pro­
posed, based on our conjectures about human vision 
ability. It includes local feature grouping and new fea­
ture describing. Based on laws of perceptual grouping 
and neural network modeling, we develop a novel ap­
proach for feature grouping, which finds the partion 
of an image into so called feature-support regions. In 
order to give abstract descript.ions to these regions, 
one needs a priori knowledge about their semantics 
to construct models. So we also discuss model driven 
methods for feature describing. To demonstrate our 
approach, we present its application in the limited 
domain of finding and describing st.raight lines in a 
digital image. This approach can be extended to ex­
tract other more complex symbolic image events like 
arcs, polylines, and polygons. 

1 Introduction 

Human vision is the ability to ext.ract a variety of 
features and cues from images and to draw inferences 
from them. Realizing this ability is technically diffi­
cult even if we only focus our att.ention on the pro­
blem of feature extraction from digital images. One 
difficulty is the fact t.hat t.he physical transformat.i­
ons from objects to images are degenerat.ed due to 
a variety of confounding factors, including complex 
uncontrolled lighting, highlights and shadows, tex­
ture, occlusion, complex 3D shapes, and digitization 
effects. All of these make feature extraction to vary 
in quite unreliable and unpredictable ways. 
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Besides, many features are only perceived owing to 
the combination of weak evidence of several other fea­
tures. The evidence may be so weak that each feature, 
if viewed in isolation, would be uninterpretable. Now 
the difficulty is how to discover and group those fea­
tures at a lower level that may support the extraction 
of a new feature with a higher level of abstraction. 

To undo some degeneracies in images and Inake fea­
ture extraction robust, we need knowledge about 
image events, objects in the world, and the imaging 
process. We need context-information and a priori 
models to guide feature searching and describing. The 
difficulty, then, is when and how to integrate the re­
levant knowledge and the context-information during 
feature extraction. 

Due to these difficulties, many feature extraction me­
thods fail to find most relevant features. They may 
find either too many or too few image events. They 
may provide just a little information about extracted 
features, namely feature properties, which may be re­
quired to support inference drawing. And, they may 
t.ell us t.oo few about. t.he quality, namely the accu­
racy and the reliability, of extracted fe~t.ures which 
is a. very important information for top-down control 
over the knowledge based interpretation process. 

Feature extraction is a multi-level process of abstrac­
tion and representation. At the lowest level of abstrac­
tion, numerical arrays of direct sensory data are given, 
including digital images and the results of ot.her pro­
cesses which produce point/pixel data in regist.er with 
the sensory data. Now the goal is to discover image 
event.s which may represent some symbolic-semantic 
information and to describe t.hem in a relevant way. 
This is the first. level of abst.raction. At t.he second le­
vel of abstraction, the image events extracted earlier 
are used as building elment.s to form new image events 
and structures with more abstraction. This discovery­
description process can be repeated at a higher level 
to hypothesize scene and object part.s. There is no 
doubt that two functions are required for building 



Figure 1: Two pictures containing a set of dots 

a feature extraction system based on this bottom­
up data-directed organization of interesting percep­
tual events: namely the function of grouping pixels 
or image events with weak evidence into new image 
events which would be better interpretable and the 
function of describing the new image events effecti­
vely to provide more information about their featu­
res. How to realize these two functions in a system is 
the objective which we are going to discuss. 

In this paper, a two-stage paradigm for feat.ure extrac­
tion from images is proposed. It includes two procedu­
res of neural network based feature grouping and mo­
del driven feature describing and it takes int.o account 
the above mentioned troubles for feature ext.raction. 
In order to demonstrate this paradigm, we just look at 
the problem of extracting straight lines from image ar­
rays. Based on a novel neural network model, we pre­
sent a high-quality line finder which gives a complete 
description about geometric and photometric proper­
ties of extracted lines. The approach can be extended 
to find other more complex image events, including 
arcs, curves, polylines, and polygons. 

2. A Two-Stage Paradigm 

Image Understanding can be thought of as an infe­
rence process in which a description of the outside 
world is inferred from images of the world, having 
assistance of our a priori knowledge and experiences 
(ZHENO, 1992). Drawing inference from image data 
requires, first, the ability of discovering image event,s 
and representing their features in a relevant way, as 
mentioned earlier. Before we realize this ability tech­
nically, we should first know how an image event. is 
perceived. 

An image is a distribution of the luminance inter­
cepted by the camera lens. Many factors, including 
the surface material, the atmospheric conditions, the 
light source, the ambientlight, the camera angle and 
characteristics etc., are confounded in the image and 
contribute to a single measurement, say the intensity 
of a pixel. The various factors cannot be separated, 
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as long as they are not measured. So a single pixel 
ca.n support one hypothesis only with very weak evi­
dence and it can present some visual impressions only 
in combination with many other pixels. This can be 
made explicit by examining the two pictures illustra­
ted in Figure 1. Here both pictures contain a set of 
dots as stimuli. However, only the left picture present 
a visual impression of a straight line. This suggests 
that image features are represented by a group of pi­
xels and the first step in feature extracting is grouping 
such pixels into so called feature-support regions, ba­
sed on our knowle~ge of what we want to extract. 

For digital images, the situation is more complex, as 
they are corrupted by both discrete spat.ial sampling 
and intensity quant.ization, and there is stochastic 
component in image data. In this case, the evidence 
which can be given by a pixel is not only weak but 
also erroneous and unrelia.ble. So, the second step in 
feature extraction is describing a group of noisy pi­
xels obt.ained through grouping. This is an ill-posed 
problem as one can hypothesize an infinite number 
of different underlying descriptions (ZHENO, 1990). 
Of course, many of these descript.ions are senseless. 
But the main question is how to find the description 
which we think of as the best one according to our a 
priori knowledge about what the group of noisy pixels 
should present. This means that a feature extraction 
system should be able to verify and describe feat.ure­
support regions using models and to give more com­
prehensive information about. their features for sub­
sequent inference and reasoning. 

Obviously, features in images may have different 
degrees of abst.raction and complexit.y. So, feature 
extraction requires a bottom-up hierarchy of the 
grouping-describing process, from low to higher ab­
straction. 

3 Perceptual Grouping 

The human vision is t.he only example for developing 
an art.ificial syst.em to solve visual problems like fea­
ture extract.ion. However, our knowledge about the 
human visual syst.em is very limited, no matter from 
physiological or psychological point of view. 

One of the most obvious and int.eresting facts of llU­
man visual perception is the ability of the so called 
perceptual grouping which is based on the researches 
of the Gestalt psychologists. They argue that humans 
must be able to partion a scene into coherent, organi­
zed and independently recognizable entities or groups 
by using a set of generic criteria and Gest.alt laws and 
the human visual system is very good at detecting 
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Figure 2: The Laws of perceptual grouping 

geometric relationships such as collinearity, paralle­
lism, connectivity, and repetitive patterns in an other­
wise randomly distributed set of image events. 

WERTHEIMER (1923) proposed one of the earliest and 
perhaps most acceptable sets of such laws, some of 
which can be roughly stated as follows (cr. Fig. 2): 

• The Law of Proxinlity: the stimulus elements 
which are geometrically closer tend to be percei­
ved as one entity. 

6) The Law of Similarity: the stimulus elements 
which have similar properties tend to be percei­
ved as one entity. 

• The Law of Good Continuity: the stimulus 
elements tend to form a group which minimizes 
a change or discontinuit.y. 

III The Law of Closure: the stimulus elements 
tend to form complete figures which are a priori 
known. 

• The Law of Symmetry: the stimulus elements 
tend to form complete figures which are symme­
trical. 

• The Law of Shnplicity: the stimulus elements 
tend to form figures which require the least 
length for their description. 

The laws of perceptual grouping provide a very im­
portant source of a priori knowledge t.o deal with 
noisy, incomplete, and fragmen tary image informa­
tion and have been t.herefore widely used for a variety 
of vision tasks (l\fEDIONI et. al., 1984: MOHAN et aI., 
1989; BOLDT et al., 1989; KHAN et. aI., 1992). 
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Figure 3: The r"fcCulloch-Pitts Neuron 

4 Neural Network Grouping 

Humans seem to integrate the laws of percept.ual 
grouping for a.ggregating image data. in order to disco­
ver significant image events and cues. The main que­
stion is how to implement this ability effectively and 
to combine the results when different. laws give diffe­
rent. results. So, in this section, we look at this issue 
based on neural network modeling. 

A neural network is a computational model that is a 
directed graph composed of nodes (sometimes refer­
red to as units or neurons) and connections between 
the nodes (cf. ZEIDENBERG, 1990). With each node is 
associated a number, referred to as the node's activa­
tion. Similarly, with each connection in the network, 
a number is also associated, caned its weight. The 
three main issues in neural network research are net­
'Work connection schemes, update rules, and learning 
rules. For different tasks one should use different net­
work models. 

4.1 McCulloch-Pitts Neuron 

We begin with the McCulloch-Pitts neuron (cf. Fig. 
3) which is a basic building element of many neural 
networks. As shown in Figure 3, the activity Xj of 
a neuron is the sum of inputs that arrive via weigh­
ted pathways. The input from a particular pathway 
is an incoming signal Si multiplied by the weight Wij 

of that pathway. These weighted inputs are summed 
independently: 

where Pj is a bias term, \,,'hich is formally equivalent 
to the negative of a t.hreshold of the outgoing signal 
function. The outgoing signal Sj = f(xj) is typically 
a nonlinear function (binary, sigmoid, or threshold-



linear) of the activity Xj in that neuron. 

The dot product of the the signal vector S times the 
stored weight vector W j in (1) is a measure of the si­
milarity of these two vectors. This means that t.he 
McCulloch-Pitts neuron receives the incoming pat­
tern S, compares it with the pattern Wj stored in me­
mory, and reacts to their similarity. Of course, there 
are also some other types of measurement. of similarity 
bet.ween patterns. Probably the best known measure 
of similarity is t.he Euclidean distance, given by 

(2) 

This generalizes to the Minkowski metric, given by 

In fuzzy logic, two scalars' similarity is given by 

where Si and Wij should be drawn from interval bet­
ween 0 and 1 inclusive. 

4.2 Learning 

Using some McCulloch-Pitts neurons, one can build 
different types of neural networks for different pur­
poses. Most work in neural networks involves lear­
ning. So the goal of most neural network models is 
to learn relationships between stimuli, though many 
other things can also be learned, such as the structure 
of the network, the activation functions, even the lear­
ning rules themselves. For the task of feature grouping 
during feature extraction process, the main goal is t.o 
design a learning system which compute a classifica­
tion, where a large set of input patterns is mapped 
onto a relatively small set of output patterns, which 
represent sets into which the input patterns are clas­
sified. 

When developing a neural network to perform a par­
ticular pattern-classification operation, we typically 
proceed by gathering a set of exemplars, or training 
patterns, then using these exemplars to train the sy­
stem by adjusting weights on the basis of the dif­
ference between the values of output units and the 
desired pattern. This kind of learning is referred to 
supervised learning. 

Another important kind of learning is so called un­

supervised learning which occurs without a teacher. 
Such a learning algorithm learns to classify the input 

867 

I, II 

Figure 4: The competitive learning architecture 

sets wit.hout being told anyt.hing. It does this cluste­
ring solely on t.he basis of t.he int.rinsic statistical pro­
perties of the set of input.s. This propert.y is just t.hat. 
what we want to perform a grouping operation before 
features can be described. 

4.3 COlllpetitive Learning 

A mechanism of fundamental importance in unsu­
pervised learning is described by the phrase competi­
tive learning, which was developed in the early 1970s 
by cont.ributions of l\1ALSBURG, GROSSBERG, AMARI, 

and KOHONEN (cf. CARPENTER and GROSSBERG, 

1988). Its main principle can be shown by using the 
following simpler mathematical formalism (cf. Figure 
4). 

There is a two-layer system of AI input neurons 
(Ft) and N output neurons (F2 ). These two layer 
of neurons are fully connected by using the weight 
Wij , i = 1, ... , AI; j = 1, ... , N. Now, let Ii denote t.he 
input to t.he ith node Vi of F 1 , i = 1, ... , AI, and let 

Ii 
Xi=~ 

wi Ii 
(5) 

be t.he normallzed activity of Vi in response to the 
input pattern I = (11, h, ... , 1M). The output signal 
8i of Vi, as men tioned earlier, is usually a nonlinear 
function of Xi and it, for simplicity, can be assumed 
to be equal Xi. 

Now, each neuron Vj of F 2, j = 1, ... , N, compares the 
incoming pattern S = (81, S2, ... , Slid with the sto­
red weight vector Wj = (Wlj, 'W2j, ... , WMj) by using 
a measure of similarity ment.ioned above and gives a 
activity Xj like (1). The neuron Vk with the maxi­
mum activit.y XA~ = max(xj) is selected (winner take 
all). This is the neuron whose weight vector is most 
similar to the input vector. This weight vector is then 



adjusted to be even more similar to the incoming vec­
tor by the rule 

dWik --cit = ,Xk( -Wik + Xi), (6) 

where, is a constant referred to the learning rate. In 
this way, the network illustrated in Figure 4 can be 
trained to classify input patterns I presented to Fl 
into mutually exclusive recognition categories separa­
ted by sharp categorical boundaries. 

It has been, however, mathematically proved that 
such learning process stabilizes only if the input pat­
terns form not too many clusters, relative to the num­
ber of coding nodes in F2 (GROSSBERG, 1976). A 
competitive learning model does not always learn a 
temporally stable code in response to an arbitrary in­
put environment. Certain instabilities may arise in the 
competitive systems such that different nodes might 
respond to the Same input pattern on different oc­
casions. Moreover, later learning can wash awayear­
lier learning if the environment is not statically sta­
tionary or if novel inputs arise. All of these suggest 
that the competitive learning can not deal with the so 
called stability-plasticity dilemma (CARPENTER and 
GROSSBERG, 1988). 

4.4 The Stability-Plasticity Dilen1111a 

To deal with the stability-plasticit.y dilemma, we need 
systems which can remain plastic, or adaptive, in re­
sponse to significant events and yet remain stable in 
response to irrelevant events, and which can preserve 
its previously learned knowledge about group proper­
ties while continuing to learn new incoming patterns. 
The stability-plasticity dilemma, faced by all intel­
ligent systems capable of autonomously adapting in 
real time to unexpected changes in their world, can 
be solved based on the so called adaptive resonance 
theory (ART) developed by GROSSBERG (1976). A key 
idea to solving this problem is to add a feedback me­
chanism between the competitive layer F2 and the in­
put layer Fl. This mechanism facilitates the learning 
of new information without destroying old informa­
tion, automatic switching between stable and plast.ic 
modes, and stabilization of the encoding of the classes 
done by the nodes. 

A simplified way to implement this idea is to make a 
vigilance test of similarity before the weight vector is 
adjusted. Suppose that an input pattern I activates 
Fl. Let Fl in turn activat.e the node, or hypot.hesis, 
V1.; at F2 which has the maxmum activit.y and whose 
weight vector is therefore most similar to I. Now a 
mat.ching threshold f2 called vigilance is given. This 
t.hreshold determines hO\v close a new input pat.tern 
must be to a stored exemplar to be considered simi­
lar. If a bad match t.akes place, t.hen a reset burst. is 
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triggered. This reset burst shut.s off t.he node Vk for 
t.he remainder of the weight adapting cycle and I is 
stored as t.he weight. vector of a previously uncom­
mitted node at. F 2 . If a good mat.ch takes place, the 
weight vector of Vk is adapted by the rule 

(7) 

where nk denot.es how many times the node Vk has 
been adapted till now. 

5 A Novel Line Finder 

Feature extraction, as mentioned earlier, is a multi­
level process of abstraction and representation, from 
image representat.ion (purely numeric) to object or 
object-class models (highly abstracted). At the lowest 
level of feature ext.raction, potentially useful image 
events, such as homogeneous regions (collections of 
contiguous image data point.s wit.h similar properties), 
lines, and curves, are extracted from the image data. 
These image events can then be used as building ele­
ments to form more complex feat.ures like polylines 
and polygons, in a bottom-up abst.raction hierarchy. 
In this section we only pay at.t.ention to finding and 
describing lines in the image data. 'Ve want to demon­
st.rate our t.wo-stage paradigm for feat.ure extraction 
by present.ing it.s application in this limited domain. 

5.1 Discovering Line Context 

To facilitate the analysis let us first look at. au image 
illustrated in Figure 5a and try to find lines in it. 
The first question we are facing is what. a line means 
in a numerical array of intensit.ies. Actually, a line is 
just an abstraction. It is a visual impression produ­
ced by a group of pixels and each pixel gives only a 
very weak evidence for building this impression, even 
if t.here were no stochastic component in this pixeL 
This is quite intuit.ive if we focus our at.tention on a 
region near the ridge of t.he roof (cf. the white line 
in Figure. 5a) and extract this region from image (cf. 
Figure 5b). It is clear that the ridge of the roof in 
t.he image is only perceived owing t.o the combination 
of weak evidence of all pixels in this so called line 
support region (HANSON and RISEl\1AN, 1987). So, a 
reasonable step for line finding is the perceptual orga­
nization of image pixels into a supporting line context 
prior to making any decisions about any potential un­
derlying st.ructures. 

The perceptual laws are general grouping criteria du­
ring feat.ure ext.raction. Among them, proximity, si­
milarity and continuity can be ut.ilized to aggregate 
image pixels into line support regions. As showed 
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Figure 5: A supporting line context 

F3 F2 

Figure 6: A novel neural network for line grouping 

in Figure 2, the performance of proximity grouping 
depends on the spatial location of pixels. Those pi­
xels are grouped which are closer and lie on the line. 
Connectivity is another important law for grouping 
and its performance depends also on the spatial lo­
cation of pixels. Those pixels are grouped which are 
connected to each other on a straight line. On the 
contrary, the performance of similarity depends oulo­
cal radiometric properties of pixels. Those pixels are 
grouped which are similar, for instance, in intensity, 
gradient magnitude and orientation. 

Now, the main goal is to integrate these grouping cri­
teria for an effective implementation and to combine 
the results when different criteria give differellt re­
sults. For this purpose, a novel neural network has 
been developed. As showed in Figure 6, the network 
has four layers denoted by Fi, i = 1,2,3,4. The layer 
Fl has M neurons and it receives t.he input vector 
II = (Oi, gi, ... ) containing gradient. orientation Oi, gra­
dient magnitude gi, and other local radiometric pro-
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perties of the ith pixel. 12 = (Xi, yd is the second input 
vector containing the coordinates of the same pixel 
and it is presented to the layer F 2 . The layer F 4 is the 
output layer containing N neurons and F3 is a hidden 
layer which contains also N neurons. These layers are 
connected by the weight aij, i = 1, ... , AI, j = 1, ... , N, 
between Fl and F4, bij, i = 1, 2,j = 1, ... , N, between 
F2 and F 3, and Ci, i = 1, ... , N, between F3 and F 4 . 

To train this network to aggregate pixels into line sup­
port regions, we apply all pixels in an image whose 
gradient magnitudes are greater than a threshold as 
input data. For simplicity, let 11 only contain the gra­
dient orientation Oi of the ith pixel. For the first inputs 
II = (OJ) and 12 = (Xl, yt), the first node VI at F 4 

is chosen and the weights which are referred to the 
direct and indirect connections between V1 and other 
nodes at F 1 , F2 and F3 are adapted by the rules 

all =01 , Cl=x 1bll +Yl b21, 

b11 = cos all, b21 = sin all, (8) 

and the adapting number nl of VI is set to 1. For the 
tth inputs 11 = (Ot) and 12 = (Xt, Yt), the input to the 
ith node of F3 equals Si = Xtbli + Ytb2i, i = 1, ... , N 
which is, for the sake of convenience, also its output 
signal. It is clear that Si is just a matching score for 
the similarity between inputs and stored weights. For 
the ith node of F 4, the situation is more complex. It 
has the input Ot - ali from Fl and the input Si - Ci 

from F 3 , i = 1, ... , N. Both inputs can be normalized 
by using 

[ 
(Ot - a li )2] P' _ [(Si - cd2] 

Pai = exp 2 2 ,cz - exp 2 2 ' 
~a ~c 

(9) 
where ~ a and ~ c are tow normalizing constants, and 
Pai and Pci can be thought of as two matching scores 
for the two inputs from Fl and F3. Pai gives a mea­
sure to the performance of similarity grouping, while 
Pci gives a measure to the performance of proximity 
grouping. Now, all nodes of F 4 compete to recognize 
features in the input layers. Here the main question 
is how t.o measure the match of the ith node of F 4 

using a matching score Pi. This is a problem of dra­
wing inference based on Pai and Pci. "\Then calculated 
using probability theory, the matching score Pi can be 
derived based on Bayes' Tule: 

Based on fuzzy logic, t.he matching score Pi can be 
calculated as follows: 

NoW', for the tth pixel with the inputs 11 = (Ot) and 
12 = (Xt, yd, only t.hose nodes of F 4 , which have been 
triggered by the neighbor pixels of the tth pixel du­
ring t.he last learning, compete with each other. After 



competition, the kth node of F 4 which has the largest 
matching score Pk is chosen. If Pk is greater than 
a vigilance threshold (}, the winning node Vk of F 4 

then triggers associative pattern learning within the 
weights which sent inputs to this node. The learning 
rules are written as follows: 

dalk 1 
dt = nk + 1 (Ot - alk)' 

dCk blk * b2J.~ * - = --eXt - x ) + --(Yt - Y ), 
dt nk + 1 nk + 1 

dnk dt = 1, blk = cos alk, b2k = sin alk, (12) 

where the coordinates (x*, y*) can be computed using 

[ Xy:] [ b~k -b1;b2k] [xt ]+[ Ckblk], 
-blkb2k blk Yt Ck b2k 

(13) 
and their meaning will be given later. Otherwise, if 
Pk is less than (}, a previously uncommitted node Vj 

of F 4, whose adapting number is zero, is selected. Its 
weights are adapted according to the following rules: 

alj = Ot, Cj = Xt blj + Ytb2j, 

b1j = cos alj, b2j = sin alj, 

and nj is set to 1. 

(14) 

The learning process just stated repeats itself automa­
tically at a very fast rate till each pixel in the image is 
presented to the net more than one time. After that, 
the net can group pixels into line support regions. 
Figure 5 shows, for instance, a typical line support 
region containing those pixels which trigger the acti­
vity of the same node V* at F 4. All of these pixels have 
a similar gradient orientation and lie close to a hypo­
thetic straight line which has been learned by the net 
during the learning process and can be represented 
by using the equation 

x cos ah + ysin ah - C* = 0, (15) 

where ah and c* are stored in the so called long-term 
memory storage (adaptive weights) of the net. Now, 
we come back to the meaning of (x* , y*) (cf. (13)). It 
can be proved that (x* , y*) are just the coordinates of 
the projection of the pixel (Xt, Yt) onto the hypothetic 
straight line which is represented by the node Vk. 

5.2 Model Driven Line Description 

After grouping process, some line support regions in 
the image are extracted and each of them may hide a 
potential line structure. How to make this line struc­
ture explicit is thus the main issue of this section. 
A line, as mentioned above, is just a visual impres­
sion produced by a line support region. To characte­
rize this impression quantitatively, models for what 
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name line i 
is-a line 
type I 
length 83.0 pixel 
end points (79.2,162.7), (109.8,239.8) 
0 2.8 radian 
p -13.7 pixel 
f 2.0 
0: 77.1 intensity level 

13 19.2 intensity level 
0'0 8.2 intensity level 
O'IJ 0.002 radian 
O'p 0.4 pixel 
O't 0.1 
O'a 2.5 intensity level 

O'tJ 1.7 intensity level 

Table 1: A line frame 

we want to extract are required. These models can 
then be used to fit line support regions. A good fit 
suggest.s a good line description. So, the tasks of line 
description include model generating, pararneter esti­
mation, and quality description. 

There are many ways to generat.e a line model which 
can be implicit or explicit, analytical or functional. 
For the sake of convenience, we define the following 
models to describe four line types: 

Model 

I: l(x,y) = 0: [1 +exp(_xcose+~sine-e)]-l +13 

II : l(x, y) = 0: exp [_~( x cos lJ+y :in B-P-l)2] + (J 

III: l(x,y) = -o:exp [_~(xcose+Y:inlJ-p+1)2] +13 
IV : l( x, y) = 0:( X cos 0 + y sinO - p) + 13, 13 = I 

where lex, y) denotes the intensity of a pixel (x, y), 
I denotes the average intensity of all pixels within a 
line support region, weighted by their gradient mag­
nitude, and n = (0, p, f, 0:, (3) is a set of parameters 
describing geometric and radiometric aspects of the 
line's beh aviol'. 

Given a line support region R = Ii (Xi, Yi), i = 1, ... , n 
and a line model lex, y) = f(x, y, 0, p, f, 0:, (3), it is not 
difficult to estimate the unknown parameters n based 
on, i.e., the least squares estimation technique. This 
technique, however, is very sensitive to the presence of 
outliers, i.e., to intensities with very large deviations 
from the underlying surface. For reducing the effect 
of outliers on t.he estimates, we need new methods 
known as robust. estimat.ors (HUBER, 1981). Here the 
parameters n are estimated by minimizing a penalty 
function of the residuals ,i.e., 2:;' <p(1'i), where 1'i deno­
tes the residual. This is a minimization problem which 
can be solved as iteratively reweighted least squares 
with the definition of the weights depending on <peri) 
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Figure 7: The line extraction from the first image 

(ZHENG and HAHN, 1990). The weight function <peri) 
can be, for instance, the Cauchy function defined by 

where (jr is the standard deviation of the fit and can 
also be estimated. 

For the inference and reasoning process of a higher 
abstraction level during feature extraction, it is de­
sired to know something about t.he quality of featu­
res extracted from low level processing. Many feature 
extraction algorithms, however, lack a detailed and 
comprehensive description of ext.racted feat.ures. Ac­
tually, after paramet.er estimation, it is also possible 
to estimate the posteriori accuracy of the est.imat.ion. 
As a measure for t.he global fit.t.ingness of data t.o a 
model, the estimat.e 

(16) 

can be used, where 'Wi is t.he weight and tt is the num­
ber of t.he unknown parameters. Besides, t.he poste­
riori accuracies of the parameters in n can also be 
estimat.ed and they are denoted by (O'e, 0' p, 0' f' (j en 0'{3). 
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Figure 8: The line extraction from t.he second image 

Now, the line support region illustrated in Figure 5 
is used to estimate the parameters in model I. The 
result.s can be st.ored in a form of knowledge represen­
tation known as fram,e (l\1INSKY, 1975) (cf. Tabular 
1). It is to say that the accuracy of the line position is 
about 0.4 pixel (subpixel accuracy) and the accuracy 
of the line orient.at.ion is a.bout 0.002 radian. The line 
est.imated in this way is shown in Figure 5a using the 
white line. 

6 Experimental Results 

The algorithm described in the previous sections was 
applied t.o two aerial images. Due t.o the limited space 
of this paper, many interest.ing int.ermediat.e results 
can not. be discussed in this sect.ion. Here we just il­
lush'ate the lines found by the algorit.hm. 

The first image (cf. Figure 7a.) shows an aerial scene 
wit.h a house and fence on rolling terrain. Due to sha­
dows and poor cont.rast, the roof borders get. frag­
ment.ed. The image was used to t.rain the net illustra­
ted in Figure 6. After training, the net can automa­
tically group image pixels int.o line support regions 



(cf. Figure 7b) and these regions then can be used to 
estimate the model parameters n. Figure 7c-f show 
the four types of the line segments detected in the 
image, which are longer than 5 pixels. All detected 
line segments, as mentioned above, are described com­
prehensively by a set of attributes (cf. Table 1) and 
they can be used as building elements in the next 
two-stage feature extraction process to find and .. de­
tect more complex image events and structures like 
parallels, T and U structures, rectangles, and poly­
gons. Figure 8a shows the second aerial image with 
buildings, trees and roads. Figure 8b shows the line 
support regions grouped by the net. Figure 8c-f show 
the line segments of the four different types detected 
in the image, which are longer than 5 pixels. 

7 Conclusion 

This paper has advanced the beginnings of a theory of 
feature extraction with the following main elements: 
1) a two-stage paradigm of grouping and descrip­
tion for the hierarchic feature extraction process; 2) a 
neural network based approach for grouping local fea­
tures and integrating the perceptual laws effectively; 
3) methods for model driven feature description; and 
4) a novel line finder as the application of the theory. 
It is important to understand that the feasibilit,y of 
the theory consists in its applications to finding other 
more complex image events and structures. So, among 
the goals of future work will be the application of the 
theory to developing algorithms for extracting other 
features and the further analysis of the behavior of 
neural networks designed for feature extraction. 
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