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The construction of DTM together with its orthophoto based on pictures of a scale 1:12000 is carried 
out by facet stereo vision (=F AST Vision). It is regarded as a basic tool for a workstation of digital 

photo~rammetry and a basic information source for geographic information systems. To evaluate a 
large surface. the DTM has to be generated stepwise with a scan-technique. Experiments are carrie~ 
out with two different regularization methods - regularization by curvature minimization and adaptI­
ve regularization - and different regularization parameters. The image material used consisted of up 
to four aerial pictures of a rural area in Northern Germany and of pairs of computer generated 
pictures of simple geometric objects. The two regularization methods are compared and the advanta­

ge of using more than two pictures is investigated. 
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10 Introduction 

The generation of DTMs and orthophotos plays an impor­
tant part for geographic information systems. It can either 
be done by a human operator or by an automatic recon­
struction process. Facets stereo vision (Wrobel. 1987) is 
such a method. which not only provides a digital terrain 
model and an orthophoto, but also statistical measures for 
the accuracy of the reconstruction. It works with object 
models for object surface and object grey values. Surface 
and orthophoto are approximated by finite elements. 
so-called facets. When a certain region of a surface (win­
dow) is reconstructed. it -NiH be approximated by several 
Z-facets (height facets). which itself usually contain 
more than one G-facet (grey value faceD. Radiometric 
differences between the digital images are modelled by 
a radiometric transfer function. which can be linear. 
constant or omitted at all. Details of the method are 
described in another paper at this congress ( Wrobel et 
al.. 1992b) and in (Weisensee. 1992; Wrobel et al.. 
1992a). The input data needed by FAST Vision are two 
or more digital images and the parameters of exterior 
and interior orientation. 

The method results in an iterative process consisting of 

many steps. in which large systems of linear equations 
have to be solved. Each system of linear equations con­
sists of hundreds of unknowns (the total number of un­
knowns is approximately the sum of the Z- and the G-fa­
cets). Therefore. it is impossible for reasons of computation 
time and computer memory to reconstruct a larger region 
of a surface without splitting this region into smaller 
windows for reconstruction. This results in a scan-techni­
que for the reconstruction of larger areas (v. chapter 4). 
It was applied in the experiments with aerial pictures in 
this paper. 
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Surface reconstruction is an ill-posed problem (Wrobel et 
al.. 1992a.b). Making additional qualitative assumptions 
to restrict the solution space yields a regularization 
method CTikhonov. Arsenin. 1977). It is a very common 
approach to assume the reconstructed surface to be 
smooth. Thus. by adding a stabilizing functional expres­
sing that assumption an ill-posed problem can be made 
well-posed. In the experiments in this paper two me­
thods were applied: regularization by curvature minimi­
zation (a widely used approach) and by adaptive 
regularization (v. Wrobel et al. 1992a.b). 

The experimental parameters are given in chapter 2. 
Chapter 3 explains the scan-technique used for the re­
construction of larger areas. Chapter 4 describes some 
computer-generated objects and images, being used for 
reconstruction experiments. and experimental results. In 
chapter 5 the same is done for aerial pictures of a rural 
area in Northern Germany. The experiments lead to 
some conclusions. which are drawn in chapter 6. 

2. Parameters of Pictures and FAST Vision 

a) Photogrammetric parameters 
The aerial photographs were taken from a flying alti­
tude of l800m. The focal length was 153mm. the 
scale of the photographs is 1:12000. The pixel size in 
image space is 20tLmx20tLm. The same photogramme­
tric data were used for the computer-simulated photo­
graphs of the generated objects. 

b) FAST Vision parameters 
The following parameters can be chosen for FAST Vi­
sion: 
- size of the window to be reconstructed 

- the break off criterion 
- number of levels of the image pyramid 
- size of the Z-facets 
- number of G-facets per Z-facet 
- the degree of the radiometric transfer function 



With the exception of the first two ones and the latter 
one, the parameters chosen for the experiments of 
chapter 4 and chapter 5 were the same: The image 
pyramid consisted of 3 levels. Each Z-facet had a size 
of 2mx2m and contained 4x4 G-facets.which yielded 
approx. 2x2 pixels per G-facet. In the experiments 
with computer-generated images (chapter 4) the 
window used for reconstruction had a size of l2xl2 
Z-facets (= 24mx24m in object space = 48x48 G-fa­
cets). The difference of heights between two iterations 
was used as break-off criterion with 0.02m / 0.04m / 
o .08m for interior grid heights, border heights and 
corner heights. respectively. 
For the experiments with aerial pictures (chapter 5) 
windows with a different shape were used (v. chap­
ter 3): Their size was 25x9 Z-facets (= 50mx18m 
100x36 G-facets). Break-off criterion: O.lOm / 0.20m / 
0.40m. In these experiments the differences concer­
ning the grey values between the pictures were 
modelled by a linear radiometric transfer function. 
Such a function was not utilized in the experiments 
with computer-generated pictures. because there were 
no such differences to be modelled. 

3. A Scan-Technique for the Reconstruction of larger 
areas 

The number of variables of the system of normal equa­
tions set up by FAST Vision increases with the number 
of Z- and G-facets in the object window to be recon­
structed and even more so does computation time for 
solving that system of equations. If the window contains 
rxs Z-facets and pxq G-facets, the total number of un­
knowns will amount to (r+l)x(s+l)+(p+l)x(q+D. Thus, if 
the reconstruction of a larger surface with a fine resolu­
tion CLe. small distances between the facets) is required, 
a scan-technique can be used. The window will be 
partitioned into smaller windows, which overlap each 
other. An especially efficient way of doing this is the 
use of so-called 'stripes', which are windows being very 
narrow in one direction. The application of a scan-tech­
nique using stripes results in a narrow band in the 
doubly bordered band diagonal coefficient matrix of the 
system of normal equations. In the experiments described 
in chapter 5 of this paper, stripes with 50% overlap 
were used. 

4. Reconstruction with Computer-Generated Pictures 

In order to be able to compare the results of reconstructi­
on with the exact heights of a known object, which had 
to be reconstructed, several pairs of images were genera­
ted from various computer-generated surfaces (in the 
following denoted as original surfaces), which posessed 
certain geometric features. Four objects were generated: 
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- surface 1 (rf.par.=roof with a parallel ridge): a gable 
roof consisting of two planes with an inclination of 
20° meeting at a ridge, which is parallel to the X­
coordinate axis and is the border between Z-facets. 
Thus curvature is 0 everywhere with the exception of 
the ridge. Fig. 4.9a shows an almost perfect recon­
struction of this surface. 

- surface 2 (rf.rot.=roof with rotated ridge): a 'gable roof' 
of the same shape, but the ridge forrns an angle of 
11.3° with the X-coordinate axis. see fig. 4.13a. 

- surface 3 (cyl.par.=cylinder with parallel arc). a 'cy­
linder', which in fact is a surface generated by mo­
ving a parabola along a horizontal straight line. Cur­
vature of this surface is 0 in direction of the X-axis of 
the object coordinate system. Fig. 4.6a gives an idea, 
how the original surface looks like. 

- surface 4 (cyl.rot.=cylinder with rotated arc): another 
cylinder', looking like the before-mentioned surface, 
which is rotated in the X-Y-plane by 11.30 (see fig. 
4.2a) . 

The grey values on the 'gable roof ranged from 0 to 127 
on the 'shady plane' of the roof and from 128 to 255 on 
the the 'plane exposed to the sun', Two computer-gene­
rated pictures of this surface can be seen in (Wrobel et 
al., 1992a,b). The texture on the 'cylinder' is very similar. 
but here the grey values range from 0 to 255. 
Additionally to these grey values on the object surface 
there was an area of constant grey values (size: 8mx6m 
= 4x3 Z-facets) on some of the surfaces. This area is 
marked in the figures. It was introduced to study the 
behaviour of FAST Vision in areas, where grey values 
on the object surface do not contain any information, 
which can be used for surface reconstruction. It is 
especially interesting to see, how the two types of 
regularization - regularization by curvature minimization 
and adaptive regularization - are able to 'bridge' such 
areas of constant grey v-alues. Otherwise. the matrix of 
normal equations set up by FAST Vision can become 
singular, if the objects contain such areas and no stabi­
lizing functional is added (Wrobel et a1.. 1992a,b), 
The computer-generated pictures of the above mentioned 
objects were taken with a standard deviation of 4 grey 
values (white noise). A pair of images was generated for 
each object. 
As there are four surfaces and two types of texture on 
the surface of each object (with and without area of 
constant grey value), 8 pairs of images were generated, 
Of these, 7 were used for the reconstruction experiments. 
Surface 1 containing the area of constant grey values 
was not used, because similar experiments are shown in 
(Wrobel et aI., 1992a,b). Multiplying these 7 data sets 

with two types of regularization. the number of experi­
ments amounts to 14. These and the respective figures 
were numbered as follows: 



No. of type of type of type of 
experiment surface texture regularization 

surface 4 (cyl.roU wcgv adaptive 
2 surface 4 (cyl.rot.) wcgv curv.min. 
3 surface 4 (cyl.rot.) ncgv adaptive 
4 surface 4 (cyl.roU ncgv curv.min. 
5 surface 3 (cyl.parJ ncgv adaptive 
6 surface 3 (cyl.parJ ncgv curv.min. 
7 surface 3 (cyl.parJ wcgv adaptive 
8 surface 3 Ccyl.parJ wcgv curv.min. 
9 surface 1 Crf.parJ ncgv adaptive 

10 surface 1 Crf.parJ ncgv curv.min. 
11 surface 2 ( rf.roU wcgv adaptive 
12 surface 2 C rf.roU wcgv curv.min. 
13 surface 2 C rf.roU ncgv adaptive 
14 surface 2 C rf.roU ncgv curv.min. 

(wcgv with constant grey value, ncgv no constant 
grey value, adaptive = adaptive regularization, curv.min. 
= regularization by curvature minimization). 

Table 4.1 shows S0me numerical results of these experi­
ments. which were carried out using two different regu­
larization parameters A for each regularization method: 
A=2000 and A=4000. The shown values from the expe­
riments are: 

So standard deviation of unit weight of the digital 
image grey values. 

5Z mean standard deviation of heights Z. 
rmsC dZ) root mean square of the differences between 

original surface and reconstructed surface. 
dZmax maximum value of dZ, 
dZmin minimum value of dZ. 

dZmax and dZmin are the extreme values of the diffe­
rences in the grid-points forming the grid of Z-facets 
with the exception of those grid-points situated on the 
borders of the window in object space. which was used 
for reconstruction. 

IA=20001 
Exper. So Sz rms(dZ) dZmax dZmin 

No. metres metres metres metres 
cyl. rot. = surface 4 

1 4.3 0.029 0.082 0.218 -0.322 
2 4.3 0.029 0.041 0.074 -0.029 
3 4.3 0.028 0.062 0.206 -0.145 
4 4.4 0.028 0.040 0.075 -0.056 

cyl.par. = surface 3 
5 3.9 0.025 0.089 0.133 -0.163 
6 4.0 0.026 0.093 0.134 -0.127 
7 3.9 0.026 0.092 0.131 -0. 164 
8 4.0 0.027 0.093 0.132 -0.124 

rLpar. = surface 1 
9 

13.91
0

.
033

1 
0.063 

I 
0.121 

I 
-0.181 

10 4.1 0.035 0.100 0.275 -0.176 
rf.rot. = surface 2 

11 4.0 0.034 0.108 0.276 -0.411 
12 4.2 0.035 0.114 0.472 -0.160 
13 4.1 0.034 0.096 0.173 -0.390 
14 4.3 0.035 0.092 0.251 -0.166 
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r A=4000l 
Exper. So Sz rms(dZ) dZmax dZmin 

No. metres metres metres metres 
cyl.rot = surface 4 

1 4.3 0.024 0.062 0.148 -0.241 
2 4.4 0.025 0.044 0.060 -0.036 
3 4.3 0.023 0.051 0.147 -0.106 
4 4.4 0.024 0.045 0.060 -0.044 

cyl.par. = surface 3 
5 3.9 0.021 0.091 0.130 -0.177 
6 4.0 0.022 0.099 0.133 -0.118 
7 3.9 0.022 0.094 0.129 -0.183 
8 4.0 0.023 0.099 0.134 -0.118 

rf.par. = surface 1 
9 

13.91
0

.
028

1 
0.063 I 0.

109
1 -0.207 

10 4.2 0.030 0.128 0.349 -0.215 
rL rot. = surface 2 

11 4.0 0.028 0.099 0.287 -0.340 
12 4.3 0.030 0.136 0.512 -0.220 
13 4. 1 0.028 0.087 0.136 -0.342 
14 4.4 0.030 0.115 0.319 -0.219 

Table 4.l Numerical results of reconstruction experiments 
1-14 with two different regularization parame­
ters A (For comparison: Sz = O.l8m corresponds 
to 0.1%0 of 'flying altitude') 

Comparing the two regularization methods. it has to be 
noticed, that adaptive regularization yielded equal or 
lower standard deviations of unit weight and equal or 
lower standard errors of heights in all experiments. But 
which regularization method yields lower rmsCdZ) de­
pends very much on the surface to be reconstructed 
and on the regularization parameter A chosen. As it had 
to be expected from theory and from the experiments in 
(W robel et aL. 1992a.b), the ridge in surface 1 (rf.par.) 
is reconstructed best by adaptive regularization. The 
same is true for surface 3 Ccyl.parJ. In both cases the 
largest curvature of the original surface can be found at 
the borders between Z-facets and thus the smoothing 
effect of regularization by curvature minimization causes 
larger differences between original and reconstructed 
surface. However. it has to be said. that the advantage 
for adaptive regularization is only marginal. if surface 
3 Ccyl.parJ is reconstructed with reconstruction parame­
ter A=2000. With the same choice of A. the reconstruc­

tion results of surface 2 C rf.roU are very similar for 
both regularization methods. If there is no area of con­
stant grey value on the surface. the reconstructed surfa­
ce is marginally closer to the original one when using 
regularization by curvature minimization. If surface 2 
Crf.roU contains an area of constant grey value, the 
opposite is true. And the difference between original 
and reconstructed surface is clearly higher for adaptive 
regularization, when surface 4 Ccyl.rot.) is reconstructed 
using A=2000. 



The choice of a higher regularization parameter A=4000 
shows. that regularization by curvature minimization is 
more sensitive to an increase in A. if the surface con­
tains edges: rmsCdZ) is distinctively lower for adaptive 
regularization in the case of reconstruction of the sur­
faces 1 Crf.parJ and 2 Crf.roU. The reconstruction of the 
smooth surface 3 Ccyl.parJ again yields only marginal 
differences in the rmsC dZ) -values for both regularization 
methods. The experiments 1-4 also show, that recon­
struction with regularization by curvature minimization 
is closer to the original surface, if A=4000 is chosen. 
But compared with A=2000, the gap between the 
rmsCdZ)-values of both regularization methods has be­
come closer. 
In regularization by curvature minimization. the implied 
assumption of smoothness of a surface yields smooth 
reconstructed surfaces. which can be seen in fig. 4.2a, 
fig. 4.6a, fig. 4.8a, fig. 4.l0a and fig. 4.l2a Call surfaces 
reconstructed 'II'irith A=2000). 

If the surface to be reconstructed itself is smooth. the 
reconstructed one shows great similarity to the original 
one. But if it is not. the surface edges will not be pro­
perly reconstructed. especially if a high regularization 
parameter A is chosen. 
All experiments show. that both regularization methods 
are capable of 'bridging' areas of low contrasts in image 
grey values. 
Fig. 4.15 shows the standard deviation of heights for the 
reconstruction of surface 4 Ccyl.roU containing an area 
of constant grey value. fig. 4.16 shows the standard de­
viation of heights for the reconstruction of the same sur­
face. which does not contain such an area. Adaptive 
regularization was used in both cases. The distribution of 
standard errors looks very similar in both cases, . with 
one exception: in the area of constant grey value the 
standard deviations of heights are higher in fig. 4.15 
than those in the respective area in fig. 4.16. In that 
experiment the area to be 'bridged' is small, only 4x3 
Z-facets. The increase of sz. is low, accordingly. But 
principally. these values can be used for the detection 
of regions of insufficient grey value information. Such 
areas could be marked in the reconstruction result. in 
order to inform a human operator of this situation. 
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Fig. 4.1 a Surface 4 with area of constant grey value: 
reconstructed surface 

FAST Vision with adaptive regularization 
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Fig. 4.1 b Surface 4 with area of constant grey value: 
differences between original and reconstructed surface 

FAST Vision with adaptive regularization 
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Fig. 4.2a Surface 4 with area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by -curvature minimization 

Fig. 4.2b Surface 4 with area of constant grey value: 
differences between original and reconstructed surface 

FAST Vision with regularization by curvature minimization 
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Fig. 4.6a Surface 3 without area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by curvature minimization 

1010 



Fig. 4.7a Surface 3 with area of constant grey value: 
reconstructed surface 

FAST Vision with adaptive regularization 

Fig. 4.7b Surface 3 with area of constant grey value: 
differences between original and reconstructed surface 
FAST Vision with adaptive regularization 

Fig. 4.8a Surface 3 with area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by curvature minimization 
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Fig. 4.8b Surface 3 with area of constant grey value: 
differences between original and reconstructed surface 
FAST Vision with regularization by curvature minimization 
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Fig. 4.9a Surface 1 without area of constant grey value: 
reconstructed surface 

FAST Vision with adaptive regularization 

dZ 

0,5 

-0,0 

Fig. 4.9b Surface 1 without area of constant grey value: 
differences between original and reconstructed surface 

FAST Vision with adaptive regularization 

Z-axis 
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Fig. 4.1 Oa Surface 1 without area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by curvature minimization 

Fig. 4.1 Ob Surface 1 without area of constant grey value: 
differences between original and reconstructed surface 
FAST Vision with regularization by curvature minimization 



Fig. 4.11 a Surface 2 with area of constant grey value: 
reconstructed surface 

FAST Vision with adaptive regularization 

FiI'J. 4.11 b Surface 2 with area of constant grey value' 
differences between original reconstructed surface . 

FAST Vision with adaptive regularization 

Fig. 4.12a Surface 1 with area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by curvature minimization 

FiI'J. 4.12b Surface 1 with area of constant grey value' 
dlffere~c~s b~tween original and reconstructed surface 
FAST VIsion with regularization by curvature minimization 
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Fig. 4.13a Surface 1 without area of constant grey value: 
reconstructed surface 

FAST Vision with adaptive regularization 
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dZmin=-0.390 m ridge ~ 
F!g. 4.13b Surface 1 without area of constant grey value: 
differences between original and reconstructed surface 

FAST Vision with adaptive regularization 

Z-axis 
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Fig. 4.14a Surface 1 without area of constant grey value: 
reconstructed surface 

FAST Vision with regularization by curvature minimization 

Fig. 4.14b Surface 1 without area of constant grey value: 
differences between original and reconstructed surface 
FAST Vision with regularization by curvature minimization 



Fig. 4.15 Surface 4 with area of constant grey value: 
standard deviation of heights sZ 

FAST Vision with adaptive regularization 

sZ 

0'05~.~_ 
0,03 

0,05 

Fig. 4,16 Surface 4 without area of constant grey value: 
standard deviation of heights sZ 

FAST Vision with adaptive regularization 

5. Reconstruction with Aerial Pictures 

One purpose of the experiments in this chapter is a 
comparison of the two regularization methods. The other 
is to study the different results of surface reconstruction 
using 2. 3 and 4 pictures. In order to achieve that. a set 
of aerial pictures with a longitudinal and lateral overlap 
of 60% was chosen. These were taken in a rural part of 
southeast Lower Saxony. a state in Northern Germany. 
The area to be reconstructed consists of fields and 
woods. The contrasts in the images are low. The scan­
technique described in chapter 3 was used in order to 
limit the size of the systems of normal equations set up 
by FAST Vision. Table 5.1 shows the numerical results 
of the experiments, which were carried out with both 
regularization methods, with 2. 3 and 4 pictures and 
with regularization parameters A=2000, A=4000 and 
A=6000. The area to be reconstructed was divided into 
4 stripes of a size of 25x9 Z-facets. The numerical results 
for all experiments and all stripes are given in table 5.1. 
The values to be compared for different regularization 
methods, different regularization parameters and different 
numbers of pictures are: 
So standard deviation of unit weight. 
Sz mean standard deviation of heights. 

As in the experiments with computer-generated pictures. 
the standard deviations of unit weight were equal or 
lower. if adaptive regularization was used (only excep­
tion: stripe 4. A=6000. 4 pictures). In general. the mean 
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standard deviation of heights also was equal or higher. 
if one chose regularization by curvature minimization 
(exceptions: stripe 3. A=4000. 3 pictures ; stripe 3, 
A=6000, 3 pictures ; stripes 3 and 4, A=6000, 4 pictu­
res). As the differences in these values were only mar­
ginal. the surface can be expected to have been smooth. 
so that the assumption of smoothness implied in regula­
rization by curvature minimization is true. Standard 
deviation of unit weight and mean standard deviations 
slightly increase with increasing regularization parameter 
A, which shows, that A should be chosen as low as 
possible in order to get good reconstruction result. But 
on the other hand it has to be chosen high enough to 
guarantee, that the break-off criterion is met. As the dif­
ference in the numerical results does not depend very 
much on the choice of A. this choice is not a crucial 
point. which again indicates, that the surface is smooth. 

regularization 

St. curvat. min. adaptive 

np A no. So 5Z n; So Sz n1 

2 2000 1 6.6 0.065 4 6.3 0.062 17 
2 2000 2 7.0 0.051 4 6.6 0.049 10 
2 2000 3 7.8 0.064 12 7.6 0.062 11 
2 2000 4 8.4 0.074 12 8. 1 0.070 50 
2 4000 1 6.7 0.055 4 6.5 0.053 6 
2 4000 2 7.0 0.043 4 6.7 0.041 6 
2 4000 3 7.9 0.054 12 7.6 0.052 16 
2 4000 4 8.5 0.063 12 8.3 0.061 20 

2 6000 1 6.7 0.050 4 6.5 0.048 6 
2 6000 2 7.0 0.038 4 6.8 0.037 6 
2 6000 3 7.9 0.049 12 7.6 0.047 16 
2 6000 4 8.5 0.056 12 8.3 0.055 20 
3 2000 1 4.3 0.045 3 4.2 0.045 5 
3 2000 2 4.5 0.035 3 4.4 0.035 7 
3 2000 3 5. 1 0.044 4 5. 1 0.043 50 
3 2000 4 5.6 0.052 3 5.5 0.049 50 
3 4000 1 4.3 0.038 3 4.3 0.038 4 
3 4000 2 4.6 0.029 3 4.5 0.029 6 
3 4000 3 5.2 0.037 4 5. 1 0.038 7 
3 4000 4 5.6 0.043 3 5.5 0.041 50 
3 6000 1 4.3 0.034 3 4.2 0.033 4 
3 6000 2 4.6 0.026 3 4.5 0.026 4 
3 6000 3 5.2 0.033 3 5. 1 0.034 5 
3 6000 4 5.6 0.039 3 5.6 0.037 50 
4 2000 1 4.0 0.042 3 4.0 0.041 5 
4 2000 2 4.4 0.034 3 4.2 0.033 7 
4 2000 3 5.0 0.043 4 5.0 0.043 3 
4 2000 4 5.4 0.049 3 5.3 0.048 44 
4 4000 1 4.0 0.035 3 4.0 0.035 3 
4 4000 2 4.5 0.028 7 4.3 0.027 6 
4 4000 3 5.0 0.036 3 5.0 0.036 7 
4 4000 4 5.4 0.041 14 5.2 0.041 50 
4 6000 1 4.0 0.032 3 4.0 0.032 3 
4 6000 2 4.5 0.026 3 4.3 0.024 6 
4 6000 3 5.0 0.032 3 5.0 0.033 5 
4 6000 4 5.4 0.037 13 5.5 0.040 3 

Table 5.1 Numerical results of surface reconstruction with 
2. 3 and 4 aerial pictures (np=number of pic­
tures, ni=number of iterations, n i =50 => con­
vergence criterion was not met in 50 iterati­
ons, St.no. '" No. of stripe) 



The greatest difference in the values of So and Sz oc­
curs. if different numbers of pictures are used for surface 
reconstruction with FAST Vision. The values are the 
lower. the more pictures are used. Fig. 5.1 shows So for 
all stripes and all numbers of pictures for regulariza­
tion by curvature minimization and A=2000. Fig. 5.2 
shows Sz for the same case. 
The number of iterations using adaptive regularization is 
almost always higher than that using regularization by 
curvature minimization. This effect results from the hig­
her degree of freedom of adaptive regularization. 

A comparison of the heights resulting from automatic 
surface reconstruction with FAST Vision and the values 
measured by a human operator will be carried out in 
the near future. 

2 pictures 

3 pictures 

4 pictures 

Fig. 5. i: Standard deviation of unit weight dependent on 
number of pictures used for FAST Vision 

mean standard deviation 

of heights (metres) 

0,05 

2 pictures 

3 pictures 

4 pictures 

Fig. 5.2: Mean standard deviation of heights dependent 
on number of pictures used for FAST Vision 

6. Conclusions 

Two aspects were important in the experiments carried 
out in this paper: How will the results of the recon­
struction of different surfaces dIffer. if both methods of 
regularization, regularization by curvature minimization 
or by adaptive regularization. are used? And will there 
be a noticable improvement in the reconstruction of 
surfaces. if the input data consists of more than two 
pictures? 

The answer to the latter question is clearly positive. The 
addition of a third picture not only lowers the values of 
standard deviation of unit weight and the mean stan­
dard deviations of heights. but also cuts down the 
number of iterations necessary to meet the break-off 
criterion. Using four instead of three pictures does not 
result in such a big improvement, but one has to keep 
in mind. that one of three pictures or its orientation data 
might be of poorer quality. Then. the addition of a 
fourth picture would increase the reliability of the 
recontruction results. 
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The comparison of the two regularization methods de­
pends on several prameters. Surfaces containing edges 
are better reconstructed using adaptive regularization. 
whereas the assumption of smoothness implied in regu­
larization by curvature minimization yields better re­
construction of smooth surfaces as long as the regulari­
zation parameter A is chosen not too high. Surface 1 
(rf.par.) and 2 (rf.roU are composed of Z-facets with 
zero curvature almost everywhere. On surfaces 3 (cyl. 
par.) and 4 (cyl.rot.) one of the prinCipal curvatures is 
zero everywhere and the other varies from almost zero 
to low values only. So. there are good conditions for 
applying regularization by curvature minimization. The 
second method - adaptive regularization - is practically 

independent of the type of surface curvatures, but as it 

offers much more degrees of freedom to the object sur­
face model the results show up more roughness than 
with the first mBthod. Adaptive regularization was 
introduced in order to yield recontruction results not so 
dependent on that choice of A. this property is confir­
med by the experiments: The reconstruction results deri­
ved from regularization by curvature minimization get 
worse with increasing A in general. which is not true if 
adaptive regularization is used. The price to be paid for 
using adaptive regularization is a higher number of 
iterations. 
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