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Abstract

Integrating information from sequences of stereo im-
ages can lead us to a robust visual data fusion. Instead of
considering stereo and temporal matchings as two indepen-
dent processes, we propose a unified scheme in which each
borrows dynamically some information from the other. Us-
ing an iterative approach and statistical error analysis, dif-
ferent observations are appropriately combined to estimate
the motion of the stereo rig and build a dynamic 3D model
of the environment. We also show how motion estima-
tion and temporal matching can be used to add new stereo
matches. The algorithm is demonstrated with real images.
Implemented on a mobile robot, it shows how fusion of vi-
sual data can be useful for an autonomous vehicle working
in an unknown environment.

1 Introduction

In stereo and motion analysis, most of previous work has
been conducted using either two or three static cameras [27]
or a sequence of monocular images obtained by a moving
camera [4]. Several researchers tried to combine these two
process to find faster and more robust algorithms [7, 23,
18, 16, 21, 17, 22, 19, 2, 11].

We believe in the efficiency of stereo-motion coopera-
tion. This paper is another attempt to improve this idea.

To extract 3D information from real images, “mean-
ingful” extracted features, such as corner points, edges,
regions, etc., are often used to reduce the computational
cast and matching ambiguities. In this paper, we use the
line segments obtained by an edge detector. Line segments
are present in most of the real-world scenes such as : high-
ways,car traffic tunnels, long indoor hallways or industrial
assembly.

In [7], [19] and [9] , we tried to make cooperate two
existing algorithms—a hypothesis-verification based stereo
matching algorithm [3] and a monocular line tracking al-
gorithm [5].Very soon we realized that each of these pro-
cesses may work faster and better (in terms of robustness)
if they could borrow dynamically some information from
each other. And the motion estimation could play an im-
portant role of intermediary between these two processes.
If we want a tighter cooperation between stereo and mo-
tion, we must not consider them as two different processes
with some interactions from time to time.

We present a unified iterative algorithm for both tem-
poral tracking of stereo pairs of segments and camera sys-
tem ego-motion estimation; which consequently allows us
to keep track of our 3D reconstructions. The algorithm is
based on a dynamic interaction between different sources
of information.

Figure3 shows the general scheme of the algorithm.
This scheme is adapted from that of Droid [14, 10]. The
basic difference is that we use straight lines features as to-
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ken, where Droid make use of point feature, and once the
cameras system ego-motion is estimated, we use that in-
formation for tacking 2D lines on each camera.

In section 4, we describe how to use straight line tokens
to estimate the cameras system ego-motion and its associ-
ated covariance matrix. The algorithm is decomposed in
three different steps, as shown in figure3. In section 6, we
describe these three different steps. Finally, section 7 shows
briefly the results of the different steps of our algorithm on
real images obtained by INRIA mobile robot.

2 Preliminaries

Vectors are represented in bold face, i.e x. Transposition of
vectors and matrices is indicated by 7, i.e xT. % denotes
the time derivative of x, i.e x = %. 3D points P are
represented by vectors P = (X, Y, Z). For a given three-
dimensional vector x we also use X to represent the 3 x 3
antisymmetric matrix such that Xy = x Ay for all vectors
y. I, represents the n X n identity matrix.

y

Fig.1. Pinhole model of a camera

We model our camera with the standard pinhole model
of figure-1 and assume that everything is referred to the
camera standard coordinate frame (ozyz). We know from
work on calibration [24, 6] that it is always possible, up to
a very good approximation, to go from the real pixel values
to the standardized values z and y. When using a pair of
calibrated stereo cameras, everything is written in one of
the cameras coordinate systems.

3 The Pluckerian line representa-
tion

Different line representations in ®2 and R3, have been used
-1z in computer vision works. Though the theoretical re-
sults may be equivalent, one is more or less suitable for
a possible implementation. Here, we use the Pluckerian




line representation. The Pluckerian representation is the
canonical line representation in projective geometry.

The Pluckerian coordinates are defined as follow: Let
P be the cartesian coordinates of an arbitrary point on a
line D in a 3D space and 1 be the unit direction vector
of the line D. We introduce and often use the vector H
which is the orthogonal from the origin O to the line D. It
is easily seen that

PAl=HAI
or
PAl=N=bhn
where N=H Al and n -—-Wg—” is the normal to the plane

defined by the 3D line D and the origin O, and finally
h =] H| = | N | represents the distance of the line to
the origin (see fig 2). Therefore, the line equation will be

PAl=N

The two vectors (1, N) define the Pluckerian coordinates of
the line D. Note that H, 1, and IN form a right handed

coordinate system.

Fig.2. The vectors n, 1, and h.

Using this line representation we need four parameters
to represent a 3D line. Two parameters for the unit line
direction 1, and two parameters to define the vector N or
H which are orthogonal to the line direction L

Image lines : A line d, the projection of a 3D line D
on the image plane is called a 2D line. In the camera
coordinate system, this line may be considered as a 3D
line which lies on the plane z = 1. Therefore its equation
is simply:

T

mn=>0

where m = (z,y,1)T is an arbitrary point on d.

The vector n is the normal to the plane containing the
3D line, its image and the camera optical center. Therefore,
this vector n is the same as the vector n = HII:IW introduced
in the previous paragraph. We may even use the vector
N to represent the image line when the 3D line is given in
camera coordinate system. Usually we have only access to
the image lines. Therefore, we prefer in general represent
the image lines by a unit vector n.

If we take n = (o, B,7)" the line equation is written
as:

ar+ By +y=0

The vector n is a unit vector and therefore, our 2D line
representation depend only on two parameters.

4 Ego-motion estimation

Much work has been done on the motion estimation from
straight lines. In the case of discrete motion, we can par-
ticularly mention the works of Liu, Huang, Spetsakis, Ag-
garwal, Chellapa, and Vieville [13, 12, 20, 1, 4, 25] on the
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monocular sequences and that of Zhang [26] on the stereo
sequences. And in the case of continuous line motion analy-
sis approach we may refer to the works of Faugeras, Navab,
and Henriksen [8, 9, 19, 11]. One may easily verify that for
each of the fundamental formulae obtained in one case (dis-
crete or continue) one can find a similar and related one
in the other case [15]. In this paper, we use the continu-
ous approach. After the first steps, when we can use more
frames this approach shows its real advantages.

Let us take a 3D line represented by the vectors (N, 1).
We now describe its motion (IN,1). In order to gain more
insight into the problem, we assume that the 3D line under
consideration is attached to a rigid body whose motion
is described by its instantaneous angular velocity, €2, and
linear velocity V, its kinematic screw at the origin O.We
can also suppose that the object is static and the camera
system has such a motion description.

We know that the velocity P of any point P attached
to the rigid body is given by

P=V+QAP 1)

The normalized direction 1 satisfies a simpler differential
equation:

i=oal

The vector H can be expressed as

2
H=P— (P (3)
therefore,
H =P — (P71)i - (P71 + PTi)l
Replacing P and 1 by their values from equations 1 and 2,
H

V+ QAP - P - (VI

we obtain:

H=QAH+V - (V) (4)
Then it’s easy to obtain N, the time derivative of N = HAlL
HAL+HAIL

(QAH+V —(VIDDALI+HA (2A])
QAMHEHAD+VAL

N

Il

and we obtain:

N=QAN+VAIl (5)

Therefore, the motion of a 3D line can be defined as follows:

[&]-lx]

where the matrix D is defined as follows:

o

Line Motion Field Equation: What we measure from
the images are the 2D lines represented by the unit vectors
n and their motion fields n. Therefore, we give here the
line motion field equation. Line motion field equation was
first given in [19]. We used two points on the line to obtain
that result. Here we draw the same equation from the

above equations. we have n = ﬁg—l—l’ therefore

(6)

& 0
vV Q




NNT .
(I~ N
Bl uNn”

QAN+

I

TR~ msV A

From the definition of N, see section 3, we have || N ||=
h the distance of the 3D line from the origin O. We use
also the fact that for a unit vector n in %2, Is — nn” = i
After a little simplification we obtain the line motion field
equation:

'VT
ﬁ:n/\n+—hf’-(1/\n) M
where n, L and h are defined as in section 2, and £
and V represent the angular and translational velocities.
And they are all written in the camera coordinate system.
If we define a vector H, passing through optical center
and orthogonal to 3D line D. One may recover £ only in
the direction of H, which is parallel to n A L:
1L = Q7 (n AL) (8)
And the rotation around an axis parallel to the 3D line is
coupled with translational velocity:

VT
L+ A (9)

That is all the information about the motion that we
can draw from a 3D line, its image on a camera and the
motion field of its image. In the case of two calibrated cam-
eras, one can write the same equations for both cameras.
The equations are then expressed in the same coordinate
system using the calibration data (R and T). In this case,
for each 3D segment we may recover the angular velocity
in the plane orthogonal to its direction define by n AL, and
Rn’'A L.

nf(n AL) =07

5 Motion Estimation and Covari-
ance analysis

5.1 How to estimate the kinematic screw?

Using equations (8), and (9), for each segment we obtain
the following matrix equation for the first camera:

Z =FX

where X = [ 8 ] , in filtering terminology, is the state

vector and

F:[n/\L 0]

AL n

is the transposed of the observation matrix and

(10)

Z=[aTL hi?(mAL)]” (11)
defines our measurement vector. A similar equation can
be obtained for the second camera. As can be observed,
the input of our system consists of the 2D line parameters
n (resp. n’ in the other camera), their covariance matri-
ces, and the calibration data R and T, together with the
stereo and temporal matchings of the 2D lines. The lines
motion fields nn (resp. 1, 3D line directions L and their
distances to the camera center h (resp. h') with their cor-
responding covariance matrices, are then estimated from
the input. They complete the input to our final system of
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equations. £ and V form the output of this system. Using
a Kalman filter, we begin with an estimation of £ and V.
In our case a reasonable assumption is that the interframe
motion is small, thus we set the initial values of £ and V
to zero. However, to take into account our lack of informa-
tion about the real motion, we set the diagonal elements of
their covariance matrices to rather large values. The next
section makes explicit the covariance analysis done in the
kalman filtering process in our case.

5.2 Covariance analysis: Better Under-
standing of the Kalman filtering pro-
cess

The Kalman Filtering process is very often used in com-
puter vision. We use the estimations and covariance matri-
ces, obtained by the kalman filtering process, to compute
the Mahalanobis distances between the segments(see sec-
tion 6.2). We show in this section that this is a good and
justified choice for our purpose.

The behavior of a dynamic system can be described by
the evolution of a set of variables, called state variables.

If we denote the state vector by s and denote the mea-
surement vector by m’, a dynamic system (in discrete-time
form) can be described by

(12)
(13)

sit1 = gi(si) + i, i=0,1,--,
fs’(m,iasi) =0, 1=0,1,---,

where r; is the vector of random disturbance of the dynamic
system and is usually modeled as white noise: Efr;] = 0
and E[rirl] = Q;.

Assume that the measurement system is disturbed by
additive white noise, i.e., the real observed measurement
m; is expressed as: m; = m’; + ;. where

Eln] = 0, o
sl = {5 iz}
When g;(s;) is a linear function
Sit1 = Gisi + 1y

and we are able to write down explicitly a linear relation-
ship
m; = Fis; +

from

fi(ml{,Si) =0 ’

then the standard Kalman filter is directly applicable, as
follows:
e Prediction of states:

8ii-1 = Gic18ia
e Prediction of the covariance matrix of states:

Pyo1 = GieaPitaGE ) + Qia
e Kalman gain matrix:

K; = Py FI(FiPji FF + Ay)™?
e Update of the state estimation:

8 = 81 + Ki(m; — Fi$yi-1)
e Update of the covariance matrix of states:

= (I— K:F})Py s

o Initialization:

F olo = Aso

S0|o = [So}

In our case, see section 4, s; =

X.i and G,'_l = Is, and

Fi= [ hifli n; ]




And for the initialization, we take Pojg = 0¢*Is and S = 0
(see section 4).

Replacing these in the above Kalman filter equations,
we calculate the Kalman gain matrix K;, and the covari-
ance matrix of states P;:

a0
Ki"[o Az}

Y 2 _ 1. /\1H,HzT + hf/\zL,L? h,’/\gL,‘l’l?
Bfoo’ =1s { hidan; LT Aoninf

: _ 1 1
with Ay = fFwed and Ay = TR Here, we suppose

that A, is a 2 x 2 diagonal matrix, with ;2 and $;* on the
diagonal. This is only to simplify the symbolic calculations
and does not effect the validity of our interpretations.

The matrix P; is expressed in the camera coordinate
system. Let us express this matrix in a coordinate system
define by the orthonormal vectors n;, L;, and H; at the
same origin O. In this coordinate system we have:

0 0 0 0 00
0 A2\, 0 hidg 0 0O
o 0 0 N 0 00
Fi=oos~ |0 px, 0 A 00
0 0 0 0 00
0 0 0 0 00

We write also the state vector in the same coordinate
system:

X; = [Qn; Qp; Qm, Vo, Vi VH;’]T

From P, the associated covariance matrix of X;, we see
easily that no information is brought by segment S; in the
direction of n; for €2, and in the plane defined by L; and H;
for the estimation of V. Looking at ¥; and Z; (equation
11), we see that the information we have on Qg, does not
depends on depth h;. And P; tells us that the Kalman
Filtering process is also taking it into consideration.

6 Overview of the algorithm

In this section, we outline our algorithm to solve the stereo-
motion cooperation problem that arises in the context of
a mobile vehicle navigating in an unknown static environ-
ment. A trinocular stereo vision system mounted on the
mobile vehicle has been calibrated, and the algorithm de-
scribed in this paper uses only two cameras. Our algorithm
is applied to a sequence of stereo pairs obtained by the
robot. Two adjacent pairs of stereo images are illustrated
in figures6-7 and 8-9.

The algorithm has three different steps, see figure3. In
the first step, we only track the image segments on the first
and the second cameras which have been found to be the
images of the same 3D lines. These segments are obtained
through a stereo matching process described later in this
paper. In this step we also obtain an estimation of the ego-
motion of the cameras system. In the second step, we first
update our 3D lines using the 3D-2D matches obtained in
the first step. Then, we eliminate the stereo matches found
in the first step and use epipolar constraint to find the
stereo pairs of lines which come in the field of view. In this
way, we not only update the available 3D line, but also we
find the new stereo pairs which appear in the field of view of
the both cameras. In the third step, we use the estimated
ego-motion for the tracking of the rest of line segments
on each camera. That gives us the temporal matchings
on each camera. Finally, we use the results of the three
steps of the algorithm to complete our three-dimensional
reconstruction of the robots environment. Now, we explain
in more detail the three different steps of the algorithm.

Framen

camera 1 camera 2

2D featurelist 1D feature list

----- 3D feature list

3D featurelist

----- 2D Timbo list 2D limbe fist

Updated lined Match list

N
3D Instantiate’
& update

Mafch list. -
s oy

IDgtantiate

Updated lines

B Fiststep [ Secondstep 8 Thirdsep

Fig.3.

6.1 First step: Temporal matching of stereo

pairs

Suppose that at time ¢;, we have a set of 3D line segments,
which are reconstructed based on all stereo pairs available
up to #;. The reconstruction technique will be described
later. In the initialization, the stereo algorithm described
in [3] is used to obtain the first set of 3D line segments.
We have also an initial estimate of motion between ¢; and
ta. Under the assumption of smooth motion, this motion
estimation can be derived using information obtained by
analysing previous stereo pairs. In the initialization phase,
the motion estimate can be obtained from the odometric
system of the mobile vehicle. In our implementation, since
the interframe motion is assumed to be small, motion pa-
rameters are initialized to zero (i.e., no motion), but with
a big covariance (i.e., very uncertain). That makes the
initialization phase much more difficult.

First of all, the stereo reconstructions help us to choose
the pairs of segments which correspond to the 3D lines
closer to the camera. These pairs of stereo matches give us
more robust depth information and once they have been
tracked, they give us also more robust motion information.
We then apply the estimated motion to such 3D lines and
project them on the cameras. In figure 4, D(¢1) is an ex-
ample of such 3D lines and D(iy) is its transformed line.
The dashed lines on the cameras are its projections.

We then find the nearest 2D segments to those pro-
jected segments in the next images. To compute the dis-
tance between reprojected segments and the next image
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segments we use the Mahalanobis distance to take account
of uncertainty measurements. We will give more details
later in this article. To reduce the research area for neigh-
boring segments we bucketize the pair of images at Z,.

The distance of a projected segment to its nearest neigh-
bors is one of the criteria we use to choose the best matches.
Another criterion is what we call the confidence factor,
which is defined as a function of the relative distance be-
tween the two nearest neighbors and represents the rate of
matching disambiguity.

Using these three criteria: distance to the cameras, dis-
tance of the reprojected segment to its nearest neighbor
in the next image, and the confidence factor of the corre-
sponding match, we find the best temporal matches. At
this point we use again the fact that we are tracking pairs
of stereo segments and verify if the candidates for temporal
matching in two cameras verify also the epipolar constraint.

D(t)

L
\ O [ N\
/D(tz)"x
15
\= i
cameral Fig.4. camera

In this way, even when the estimated motion is un-
certain, we usually find a few pairs of correct temporal
matches, which are sufficient to compute a better estima-
tion of motion parameters.

To update the motion estimation we use a modified ver-
sion of the algorithm presented in [19] and [9]. The input of
this algorithm, other than reconstructed 3D lines, consists
of the 2D velocities of their images on the cameras. Here we
estimate these velocities using two consecutive images (see
section 4). Assuming that we have several (at least two)
non parallel 3D lines undergoing same three-dimensional
motion, this algorithm allows us to recover the full kine-
matic screw of the rigid object they are attached to. Since
we keep track of uncertainty at all levels, a weighted least-
squares minimization which can be implemented with the
Kalman filter is used. Therefore even if there exist a few
incorrect matches we can still obtain a reasonable motion
estimation.

Now we begin the next iteration. At this time we ap-

ply the estimated motion to each reconstructed segment,
reproject it on to the cameras and find their nearest neigh-
bor distances and confidence factors. Based on these values
we decide if we have two good temporal matches and if so,
we then verify the epipolar constraint between the two can-
didates. Finally if the epipolar constraint is also verified
we use this new matches to update the motion estimation.

Experimental results shows that even if we track a few
pair of segments (3 or 4 pairs) in the first iteration, in
the second and the third one we are able to track almost
all stereo pairs of segments . If in the first set of tracked
segments there are some incorrect matches they will be
corrected in the following iterations.

6.2 Temporal matching of stereo pairs

To track a pair of stereo matching line segments in each
camera;

1) We reconstruct 3D lines. We apply the estimated mo-
tion to them and we get 3D lines predicted for the next
instant which are projected on the cameras.

2) We find the nearest segment to the projected segment
in the next image and choose it as a candidate for our
temporal matching process. To do that :

o Images are bucketized and we search for the neigh-
boring segments only in the buckets which intersect
the projected line segment. In this way many useless
computations are avoided and the algorithm is more
efficient.

o Mahalanobis distance is used to measure the distance
of two line segments. It is very important, because the
projected line segments are obtained from the stereo
reconstruction process and the application of an esti-
mated motion. Through the error analysis of these two
process we are able to determine a covariance matrix
associated to the projected line segments..

For two vectors S and S, with the respective covari-
ance matrices A; and A, their Mahalanobis distance
is defined as:

D(S1,5) = (81 = 52)T (A1 + Ag) (81 — 52)

‘We can simply interpret D(S1, S2) as the square of the
Euclidean distance between S; and S, weighted by the
sum of their covariances.

e We then define a confidence factor for each temporal
match. It is defined as a function of the relative distance
of the projected segment to its first and second nearest
neighbors. Suppose that S2 and S; are respectively the
first and second nearest neighbors of S;. The confidence
factor ¢ is defined as:

_ D(51,83) — D(51,52)
D(81, 55)

If the confidence factor of a temporal matching is small
(in our implementation less than 0.8), its means that
there is an ambiguity and we reject the candidate even
if its distance to its nearest neighbor is very small.

¢ Finally, for the pairs of the candidate segments obtained
through temporal matching, we check if they verify the
epipolar constraint. It means that we compute the epipo-
lar line of the midpoint of one segment (for example in
the first camera) and verify if it intersects the other seg-
ment (in the second camera). If the epipolar constraint
is also verified, we confirm these temporal matches.

6.3 Second Step: Stereo matching

In the initialization phase of the algorithm we use a trinocu-
lar hypothesis-verification stereovision algorithm [3] to find
the stereo matches.
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As the number of segments in cameras field increases,
these kinds of algorithms become very time consuming.
Temporal matching is less expensive. Particularly, when
the interframe motion is small and therefore, we can re-
duce the search area. As the cameras system moves, in
the first step, we try to track the initial stereo matches in
each camera . Obviously at each step some new segments
enter the cameras visual fields and some others may have
not been tracked. Therefore to add new coming segments
to our set of stereo matchings, we run again a classical
hypothesis-verification algorithm , see [3], only on those
few segments. It is not very costly because of the reduced
number of hypotheses generated.

6.4 Third Step: temporal matching

Once a part of the stereo pairs of the segments have been
temporally tracked, in this step we try to track the other
2D line segments. We use the results of the first step in
two different ways. First we mark the segments which take
part of the stereo-temporal matching segments. Then we
use the estimated motion obtained in first step to obtain
the temporal matchings of the 2D limbo line segments, on
each camera.

Here, we explain our temporal matching algorithm on
one of the camera. For the extremities of each segment Sy,,
taken at time t;, we draw the corresponding epipolar lines
in the image taken by the same camera at time ¢;4;. As we
have an estimation of the motion of the camera between ¢;
and #;4;, we can consider them as a pair of stereo camera.
The length of the segment, obtained through edge detec-
tion and polygonal approximation processes, is not reliable.
Therefore, we do not expect that the extremities of the seg-
ment S;,,, temporal matching of Sy, belong to these epipo-
lar lines. We define a function F(Sy;, Si,,, ) which measures
the goodness of a temporal matching (g;ti, Stia)-

Suppose e; and ey be the corresponding epipolar lines
of the two extremities of S;,. F is defined as follows:

dy + d;

£(8y;, Sy,
+ﬁ ( ti> t-+1)

[lmax

F(Stnstiﬂ) =«

Stip1

where d; and d, are defined as in the figure6.4, and lst.-+1

defines the length of the segment S;,,,, and in our experi-
ments & = f =1 and Lmaz =

6"

\

Fig.5.

The second term of the fgunction F(S4, St,,,) 1s to take
into consideration that after a small motion there is only a
small change in the direction the 2D line segments. More
details on this subject can be found in [15].
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7 Results

We have used several sequences of stereo images obtained
by our mobile robot. The baseline is about 43mm, the focal
length, 8mm and the pixel size, 8x14um?. The distance
between the objects and the cameras varies from 2m to
5m. In the experiments presented here, robot rotates 5.0
degrees around its vertical axis and moves forward 15cm, at
each step. Experimental results are shown in figures6-13.

Figures 6-7 and 8-9 display images taken by the first
and the second cameras, at ¢; and ¢, respectively. The re-
sults obtained at different steps of the algorithm are shown
in figures 10-13. Figures Figuresl0-11 show the stereo-
temporal matching segments after one iteration of the first
step of the algorithm. We also apply the estimated mo-
tion to the 3D data obtained at ¢; and show their pro-
jections on the first camera (black segments) overlayed on
the image taken at ¢ for comparison. Temporal matchings
(white segments) are used to update the motion estima-
tion. Figures 12-13 show the result of the third iterations.
The motion estimation is improved and we track almost
all the segments. After the second and the third steps of
the algorithm almost all the 2D line segments are correctly
matched. Due to the large number of tracked segments on
each camera, it is not easy to visualize the results in black
and white. Therefore, the results on the second and the
third steps of the algorithm are presented, using the color
slides, during the conference.

8 conclusion

We have presented a unified and iterative algorithm for the
fusion of the visual data based on the dynamic cooperation
between stereo matching and temporal matching processes.
This cooperation is robust and less time consuming than
doing the classical stereo reconstruction at each step of the
motion of a mobile robot and the results are quite satis-
factory. As we use all segments to estimate the kinematic
screw the method only works if all segments considered ac-
tually belong to the same rigid object, otherwise it fails. A
solution for the multiple objects motion analysis based on
the stereo-motion cooperation is given in [16].
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