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ABSTRACT

First, some general considerations are given concerning potenti-
al strategies for least squares nonlinear parameter estimation
where no or only coarse approximations are available. This is
followed by a survey of methods of generalized relative orienta-
tion. The use of such methods for obtaining approximations for
the bundle adjustment is also described.

INTRODUCTION

In photogrammetry and geodesy there has been a growing interest
'in designing a general numerical algorithm for finding the app-
roximations needed for solving nonlinear problems iteratively

[9] p. 281. This is particulary true in the field of industrial
photogrammetry where the traditional method of deriving approxi-
mations sometimes involves operations such as extra field mea-
surements, which might hamper and delay the process seriously [61]

This paper deals with potential numerical algorithms for the rel-
ative orientation of pairs of photographs assuming no restricti-
ons in the size of the unknown parameters, and which require no
(or only coarse) approximations (bx # 0 and known inner orienta-
tion are however assumed). First, two general strategies for
solving nonlinear problems principally without the knowledge of

& priori approximations are considered: a) parameter transfor-
mation as a means of making the equations directly solvable for
finding approximations, and b) the trial and error method with
different sets of conjectured approximations for an iterative
solution technique (e.g. continuation). Some difficulties such
as singularity and multiple solutions are indicated and some ma-
thematical models and techniques of generalized relative orien-
tation are surveyed. (In [5,10] such methods are reported to
have found practical applications). Finally an algorithm for fin-
ding initial values for the bundle method is outlined.

GENERAL STRATEGIES FOR SOLVING NONLINEAR PROBLEMS
WITHOUT THE KNOWLEDGE OF A PRIORI APPROXIMATIONS

Parameter transformation might lead to equations by means of
which good approximations can be directly found. Let

f;(x) =0, i=1,..n, or f(x) =0 (1)
be n nonlinear equations in m unknowns ®i,(n >m). With
Y = g{®), m, parameters Vi, (m; > m)
it may be feasible to reformulate (1) into
Ay + £ = 0, n, equations, (n;> m,) (2a)
w(y) = 0, (m, - m) nonlinear equations (2b)

so that good approximations of y; can be found by means of (2a).
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Example: To find the rotation o between the two coordinate sys-
tems (U,Z),(U,2)' with common points, from the eqguations:

U - U' cosa + Z'" sina = 0

z = U'" sinoa - Z' cosa = 0
Introducing y, = cosa, y, = sina (i.e.: o = arctgl(y,/y,)) we get
linear equations with regard to y, and constraint vy2 + yf = 1.

In [13] this strategy is used to generalize relative orientation
with minimum 8 relative orientation points.

The trial and error method to find the actual solution x* in a
nonlinear problem might involve following steps:

- Guess different sets x° distributed in a region that proba-
bly covers x*.
n
- For each set compute S°=;Zlf§(x°)Pi with P; properly chosen.
1=
- Try an iterative method with the -set x° which has given the
least s°.

- If no success, try with the set x
least 8%, and so on.

 which has given the next

Note: 1if x can be grouped into X,7%X,,... S0 that (1) becomes
g(x,)x, + €, =0 (linear in x,)
h(x g )x, + ¢, =0 (linear in x,)

¢« o 8 o

WX,/ Xype0.) =0
the derivation of »° requires guessed values for only >

This strategy is used in [10] for relative orientation. The
method is slow. Another approach could be to search for good
approximations on the basis that certain conditions must be sat-
isfied to guarantee the convergence of Newton's iteration. [8].

SOME ITERATIVE METHODS FOR LEAST SQUARES NONLINEAR ESTIMATICON

Gauss Newton's method, [3] p. 164, gives fast convergence with x°

near »*, but is sensitive to poor x°. Let us write (1) as
f(z;%2) =0

where z = expectation of "observation" Z with weight coefficient

matrix Q... Introducing z = Z + v.r (=v,:observational error)

the error equations become
£((Z2 +v,) ; x) =0

Because the left side ~ f(2Z;x) + & vé, we can consider
v = f(Z;x)

.as the error equations where v is the error of an equivalent ob-

servation with weight coefficient matrix ([9] p. 114):
0 =5 oig*“, .3 =(af(z;x)/az)z=z (3)

Thus, the least squares estimates x* shal fulfil

S = f(Z;x)T 0 '£(Z;x) = min., or 9S/%x = @ (4)
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-

Gauss-Newton's method determines dx in the recursive formula

PR LS G dx, q=20,1.. (5)
on the basis of solving the normal equations
BT rpBax + 3T p £(2,x%), P = Q. _.qg rcf. (3) (6)
which are derived by (4) using the approximation.
£(2;%) ~ £(Z;x7) + B dx , B = (3£(2;%)/3%) _ g

The iteration is chosen on x only, cf. [9] p.276. vg+1 is obta-
ined from (9] p. 115)«¢ )

_.gtt - T e
vz QZZA P(f(Z;x?*) + B dx)

Remarks and comments

- Determinating dx in (5) by solving
£(z;x%) + B ax =0 (7)
when m = n, agrees with Newton's method. [4] p. 3.

' — Different criteria for the termination of the iteration pro-
cess are discussed in [2] p. 240, [9] p. 289, [14] p. 6.

- Convergence is guaranteed with x° sufficiently close to x*.

a. Undamped b. Damped c¢. Condition improved
Fig. 1. Examples of (=9}, (The basic method is Newton's)
- From a coarse x’, the iteration may diverge, repeat itself in

cycles, behave guite unregulary near singular points, or con-
verge (often after many iterations) to some undesired solution.

- The probability for convergence from an arbitary x° is greater
if dx in (5) is substituted by a damped term

k4 dx, k9 < 1
with a sequence of damping factors, {kq}, properly chosen, cf.
(4] p. 11. See fig 1lb. (A so called damped method).
- The condition is iﬁproved if a scalar matrix is added
d
u+ I

to BTPB in (6) (or to B in (7), using Newton's method) with
{u9} properly chosen, cf. [3] p. 166. See fig lc. (A so called
condition improved method) .

The continuation method solves a nonlinear problem stepwise from
arbitary %' [1],[2] p. 252, [4] p. 18, [15]. Each niveau solves
a nonlinear sub-problem, e.g., using Gauss-Newton's method as
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will be shown below:

Let S(x) be the minimization function (4) and let us assume that
a new function S' (x,t) can be defined so that S(x,l) = S(x) and

S'(%,0) = min.

has the known solution x = x". Thus we can solve the problem

S'(x,t) = min.
for an increasing sequence of values of t

by =0 <t <t, ... <t =1
giving a corresponding sequence of continually better approxima-
tions

xO

x(to), x(tl), x(tz) oo x(tm) = x¥

Each niveau p uses for instance Gauss_Newton's method with initi-
al approximations: x! = x(t _.) or better: xg = extrapolated va-
lues (p > 2) from prgvious goiutions, see [2]" p. 252. The step-
size At should be automatically adjusted so that the total number

of iterations become small.

A design of s°is given in [7]. If weights P; of independent egu-
ivalent observations are introduced, we can write:

n n
S'=t T (£,(2;%))2P.+(1~t) T [£f,(Z;x°) (1-t) - £,(2;%) 1°P, (8)

. i i . i i i

1=1 1=1 )
Note that the following error equations give a minimization func-
tion = (8):

=Vyo= fi(Z;x), weight = t Pi’ i=1,..n (9a)

v} = £ (2;%°) (1-t) - £,(Z;%), weight=(1-t)P_, i=1,..n (9b)

One alternative to (9b) is:

~vi o= %, - xi, weight = Pg(l-"t), i=1,..m | (9¢)
where Pf ~are properly chosen scale factors. On niveaus p>1,
one might use x(tp_l)'instead of x°.

If singularity occurs on a niveau, some measure must be taken,

for example if (9a), (9b) are used, adding (9c¢) with t of (9c)

as an additional parameter. In [1,4,15] there is a dis-
cussion of optimal step-size control, singularity and multiple

solutions, etc. ~

A general remark on multiple solutions

m not-overdetermined polynomial equations of orders ki give
(kl-k *...+kp) complex and real sclutions. Addition of equati-
ons might reduce the number of solutions, because in the exten-
ded system of basic equations

f(x) = 0, m equations (Loa)
w(x) = 0, additional equations (10b)

there might be some x = x* that fulfils (10a) but gives a contra-
diction ¥* = w(x*) (disregarding observational errors.) Dependent




376

0

on x° one might therefore find a local undesired minimum of S,

cf. (4), on the basis of system (10). Testing the size of S*
might reveal such a situation. Fig. 2 shows the case that (1l0a)
are one linear equation and one equation for a circle, and (10b)
is one additional linear equation. A point x° estimated from
the two linear equations might be so coarse due to bad geometry
(small g) and inevitable errors (e) that the iteration converges
to the false solution.

(xlfxz);
B
!
N Y
Fig. 2 An example of an ambiguous solution 8

METHODS OF GENERALIZED RELATIVE ORIENTATION

The traditional basis is the coplanarity condition, see fig. 3:
bx by bz
Tx - Ty Tz
Tx' Ty' Tz'

where

{bx, by, bz}T (= b) .: basis
{Tx, Ty, Tz}7T Rx (= p)
{Tx’,Ty',Tz'}T = R'x' (= p')

0 (11)

i

R,R': left, right
photo rotation

{x,7,-¢c}T (= %) : left
image point

{X',Y',—C}T (= x'): Fig. 3. Geometry of relative

right image point orientation

With weight = 1 of measured x,y,x',y', the weights of the in-
dependent egquivalent observations can be derived [11]. Cf.(3).

The asymmetric case considers R',by,bz as unknowns, with R,bx
freely chosen. Note: (1l) is linear in by,bz/given R'. The
following trial and error method [10] uses R=I and the 24 dif-
ferent quesses of R':

Je £ 5131 where €,. = 0 or 1 or -1
13

€ € € with the condition that

’ v 0 —_
le31 €,, €., IR'"'] =1
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For each R'? corresponding (by,bz)? and 89 = (VI§)°,(yfcontra-
dictions in (11)) are computed with bx = bx? and by interchanging
X/Y or X/%Z, if necessary, to get bx? > by and bx® > bz. Then the
least squares iterative method is tried, first with (R',bx,by,
bz)? having given the smallest S°, and so on.

A solution is found actual if the following is valid:
a. All k,k' > 0 after having found a pair of kyky per model-
point from: %p - k'p' - b =0

Note: Introducing b = -b, the signs of kyk; are changed. If
unequal signs, a rotation 2009 of a photo round the basis may
give equal signs of all the new k,ki, [13]1p. 436.

b. S* < Sio1 ("tol" means Sspecified tolerance").

c. Relations between distances,or angles in the model lie with-
in specified tolerances, e.g., |yl > Yeo1r fig. 3.

On the basis of results from testing this method of relative or-
ientation on simulated and real cases {5-9 model points in spa-
tial distributions), the number of trial and error cycles, n ’

. cy
can be indicated as follows:

n < 20 when using the Gauss-Newton's method and n

c t=15 (nit:
Y the pre-set maximum number of iterations).

i

< 10 when using cotinuation as described above, with n
At = 0.1 and 2-3 iterations per niveau.

ncy it=25’
‘nc < 10 when using a damped or a condition improving method
Y (see above) with Njg = 20, and a pre-set linearly decending
{k9*t!} or {u} of 10-15 steps.

Further investigations on the application of step-size control
to reduce ns, are desired. A numerical example with data from
(131 p. 438 follows:

c = 88.10 mm

k k!'>0
Solu- . Solu= [T’ Tu

x(mm) y tion 1 F1%0 ¥i0 Fionma \k,, kl<o; i4=4>
1 0.24 102.27 -0.69 0.72 0.41 0.71L 0.01 =-0.70
2 0.35 -1.46/ R'={ 0.24 0.29 =-0.92| R'={=0.21 0.95 =-0.21
3 ]181.65 93.61 -0.67 -0.62 -0.38 0.66 0.30 0.68
4 1 75.82 =57.83
5 | 88.46 3.90] b =[ 0.33 1.00 -0.061 b=1-0.09 1.00 -0.44]

x' y' Solution 3,(ki,ki<0) Solution 4, (ki’ki<0)

1l 66.24 14.68 0.86 0.30 -0.41 0.69 0.05 -0.72
2 ~82.22 -54.88) R'=|-0.48 0.75 =-0.45| R'=|=-0.19 0.98 =0.11
3 0.14 25.57 0.16 0.58 0.79 0.70 0.22 0.68
4 6.79 =-69.48
5 5.44 19.33) b =11.00 -0.75 0.76]l b ={=-0.14 1.00 -0.31|

Solutions fulfilling a can be derived from solutions 3 and 4
(introducing b = =-b) but not from solutions 1 and 2. (C£. note
above) .
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The symmetriéal case might choose bx = bx?, by = bz = 0 and

a,, = 0 (w =0 or 2009) so'that (11) becomes

bx°(a2x -a,x' - ajx' -a,x) =0 (12)

when introducing

a; {all, a;, ai3} s 1=1,2,3
with constraints .
3 B .
jilaij . akj =0 ; (i,k) = (1,2), (1,3), (2,3) (13a)
Zaij =13 i=1,2, 3 - (13b)

and correspondingly for a: (12) is linear in a,,a,/given a;,a;.
Thus we might design the %ollowing trial and error method:

- Derive different sets (az,as,a;,a;)° by guessing (a;,a;)O
for example:

fa;_"} _ '(11 0 o} f1 0 o} fo 1 o} fo 1 o}]
[PELE B S VRN A VI RREY A SR A G B
and deriving corresponding (az,a3)° from (12) and (13b).

- Try a relative orientation (the unknowns chosen can be the 11
elements of .a,,a,,a),a! with 6 constraints), first with the
set (a,,a,,a;,a3)% that has given the smallest contradicti-
ons in (13), etc.

- a,,a, are computed from the solution of a 3,a ,a , using the
constraints of orthogonality. Ambiguity 1n signs of the esti-
mates is obtained. The signs are determined so that [R|I=[R'I=
+1 and also - if possible - so that a (see above) is fulfilled.

Hout/Stefanovid's method [5] uses the nine elements u,. of U, ,
as unknowns. These are defined by +J !
T 0, -bz, by
U =R bz, 0, =bx(R'
-by, bx, 0

and the ba51c equations for n model 901nts are:
Cu = x' ux' =0, n equations | (14a)
UT(UUT - b(u)I) = 0, 3 constraints (14b)
where b(u) is half the trace of UUT

The method estimates u (one ulwchosen) by means of (14) in the
standard case (camera convergencies <509, by~bz~0) which con-
verges when u,, ,u,, have the biggest absolute values among Ui 5
and opposite 51gns. Non-standard cases are reduced to the stan-
dard one by interchanging rows and columns in U (and €) and
changing signs, after having found the two u;; that probably
have the biggest absolute values, as follows %rank (€C) = m):

- m basic unknowns are expressed in terms of not-basic ones, ap-
pPlving Cholesky's decomposition with pivoting on C-C:

ubasic = f(.unot basic) (15)

- Ifm=8, u’ is derived by (15). (One uij freely chosen).
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- If m < 8: Different sets u’ are derived by allocating
U0t basic different logical combinations of proper values -

e.g. two uy4 =1, two uj4 = 0 whenm =35 - and computing cor-
responding Uy ,gic PY (Lb? The two wuj that after the mentioned
re-arrangement become u,,,u,,, are thén taken as those with
biggest |u’l in that set W’ "that gives least contradictions in
(14b) . . :

The method presumes that traditional parameters forming the ac-
tual model can be derived from uw*. If no success (c¢f. a,b,c,
above) one could continue and try the set u’ that gives the next
least contradictions and so on. The trial and error work depe-=
nds on m. The point distribution (the geometry) and the obser-
vational accuracy must, however, be regarded when determining
the rank. A more global method than Gauss-Newton's could be ad-
vantageous. »

The relative orientation with object distances as unknowns
is based on following equations (see fig. 3):

- 7 R X = .
sij Vdi + dj 2didj cosocij = fs(d.,dj,uij) (16a)
- 12 V2 =T - ' 1
Sij Vdi + dj Zdidj cosalj = f (d ,d 13 (16b)
where
ij: Distance between object points P, and Pj

di,d.;(di,dl): Distances from P, and P. to the projection
J centre 0; (0'). J

— 2 2 2
cosocij = (x. xj+y yj+c )/(Vx +y +c? ij+yj+c )

cosuij = corresponding expression in terms of x',y',c.
Note: There are 3(n-2) independent equations (13a)-(13b), with
(2n-1) unknowns di'di; one d? chosen. (n: number of model points).

An algorithm determining different sets (d,d')° which could be
used in a trial and error method, would be:

- Guess different sets (d d1)° under the restriction that they
must give positive and real (a4, d )0 using the following for-

mulas derived from (16) with s l-
— 7 a2 . —
d, =d,-cosa,, + eV=d] sin‘a, , + 1 ; e =£1
_ AT AP . 1
d) = d;-cosaiz + &y d'*sin uiz + 1 ; ¢ £]1
Note: a,, > 1009 » ¢ = 1, o), > 1009 - g =1
- If possible, determine corresponding sets positive and real
(d ,d')°, k = 3,4,..,n, from the equations:
2 o F2 1 ¥ 1 — R
f (d dk,a k) fs(d dk’@ik) 0, 1 1,2 (17)
Note: (17)i=1 - (17)i=2 and ‘l7i=1 (or (l7)i=2) give

- iy L 5T . =
dk = ak+ eKVg ; dk ay + engk ;e +1

_ . s . '
where 9= 0 is ;ntroduced 1f’%;<0and lgw<gtol. So also for gk.
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Compute some figure S° on the accuracy of (d,d")?, e.g.:

n-=1 n
s = ¥ = (£ (d,,d.,0,.) - £ (d!,d',a,.))?2
i=1 j=i+1 s i'73'713 s 1i"7377413
The we can try the iterative least squares method, first with
the set (d,d')? that has given the least S, etc.

ESTIMATING APPROXIMATIONS BEFORE BLOCK ADJUSTMENT

The general case with no restrictions as regards the size of the
orientation parameters of bundles is assumed.

The following algorithm for estimating initial approximations in-
volves subroutines for: relative orientation, transformation [12]
intersection and resection [6], any of which need no or only co-
arse approximations of their respective unknowns.

l.

Performance of individual relative orientations

In block of n photos covering a common area, %n(n-1) models

can theoretically be formed. However, it is only the models
that have a sufficient number of relative orientation points
properly distributed in space to ensure reliability and lit-
tle trouble with ambiguity, which are in fact formed. :

Formation .of sub-blocks and block -

Models are transformed in a proper sequence to form multiple
sub-blocks or one block, in local coordinate systems. When
determinating transformation parameters, common object-points
(X,Y,2) and common photo (s) (XG,YO,ZO,w,m,K) being transfor-
med, are to be considered.. Sub-blocks are transformed like

models, to form larger sub-blocks etc.

Absolute orientation of block units

Models, or sub-blocks being formed can be transformed to the
object coordinate system, as soon as sufficient control is
contained, or the whole block can be absolutely orientated.

Intersections and resections

There might be cases when operations 1-3 do not determine
all object-coordinates and photo orientations. Therefore,
the algorithm should also include the following operations:

a. Intersections of points which have not been determined
so far.

b. Resections of photos which have not been orientated so
far. (These resections might use intersected points as
well).

c. If necessary, repetition from a, etc.

Operations 4 are performed during or after operations 2-3,
in a local coordinate system or in the object-system.

The algorithm can be conveniently used on-line with error detec-
tion included.
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