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ABSTRACT 

Ph()tOj;?Jru:nmtetric digital image metrology neOOs accurate sub-pixel positioning of targets. 
quality digital image acquisition, quantization effects are a significant source of 

position estimation eITors. Analysis of the degeneraey in the information content due to 
qmmtization re(]uin~s techniques which are different from those used for continuous or 

imagery. the analytical approaches of digital image representation theory has 
eome unifying and general concept of the "locale", or "feasibility region", upon which 
optimal position estimation can be based. A locale is simply the region of target positions 
~hich result in the same observOO digital image of the target. The approach treats digital 
nnagery differendy from conventional techniques and throws new light on the analysis of 
geo~~tric precision. It has 100 to an easily determined bound on the possible geometrie 
preelslOn and a natural statement of the meaning of optimal precision. Futhermore, a 
th~oreticany optimal algorithm, referred to as "position decoding", has 'been developed 
usmg the concept of locales and the principles of signal decoding from communication 

Simulation results have been promising and exciting. They have shown the 
ru.glont.hm to be robust and near optimal in the presenee of noise. The algorithm is 
mUOO111eed and eomparative performance reported. 

1. INTRODUCTION 

Digital image processing will a 
major role in the future of photogrammetry. 
large field of digital processing is composOO of 
diverse applications. most of which are concemOO 
with the eontext or texture of the image data. Few are 
concemOO, as photogrammetry iso with the metrology 
and geometry of digital images. Relatively little of 
the literature is presently devoted to the problems of 
extraeting geometrie measurements from digital 
images and so there is litde support outside of the 
photogrammetric eommunity for important topics 
such as the metric quality of digital images or 
teehniques for precise mensuration on digital images. 
This paper addresses these fundamentäl issues, briefly 
reviewing some aspects of digital acquisition, 
reviewing the theory of Ioeales and introducing a 
new optimal position estimation algorithm. 

Sub-pixel position estimation is necessitatOO by the 
insatiable need for improvOO aeeuraey and the 
unavoidable cost associatOO with large data volumes 
eaused by small pixels. The objective is to use a 
manageable pixel size and extraet all possible 
positioning information at that resolution. As a 
rough rule of thumb, a very good position estimation 
procOOure in an application will ac hieve about l/20th 
of a pixel positioning accuraey (often reported as one 
part in 10,000 with a 512 by 512 pixel image). 
There are many pragmatic reasons why better sub­
pixel precision is seldom achieved; lighting 
problems, mechanical instability , scene 
unpreructability, electronic and sensor noise and 
alg1orit:hm sub-optimality. In some applications, 
particularily in high precision photogrammetry, 
many of these problems have been resolved. In these 
situations, the fundamentallimitations of 



quantization noise begin to ., ... Fo ........ J' ..... "",." role. It 
is 10 this scenario that the paper 

Digital image processing with the acquisition 
of a digital image. Often the is derived, 
that is; it is acquired by dl,gltlZmg " ..... r ... ~I.,"~ ... form of 
imagery. Wbile the results may be 
such applications, the main interest lies 
digital imagery, where the scene is 
'digital camera' generating a spatial 
(intensity or grey quantized repre~~ntltion. 
This paper begins a discussion 
digital image acquisition issues. an apIJre(;iation 
which is essential 10 the realistic ~"''J.hr",'''' 

geometric fidelity of digital notOO in 
particular that the typical commercial solid state 
camera uses an RS 170 image transmission standard 
to relay images from the camera to the and 
that this signal standard seriouslv j(x>plrrdizes 
geometric integrity. 

The central topic of the 
11 locales 11 , which were mtJ~od1uce;d 
congress in Rio de Janeiro [l 
recently been extended to an Vl,.l • .u ........ 

algorithm for position estimation. abrief 
review of locales, the saHent points of the new 
algorithm are introduced. Results of simulation 
studies are reported. Some with real 
imagery are but results are not available at 
present. 

1t is apparent that the photogrammetric cornmunitv 
more than any other field of engineering, has the 
most to gain by a thorough and rigorous analysis of 
geometric precision in digital images. Efforts and 
results in tbis area must come from within the 
community and an available techniques should be 
enlisted in the investigations. The theory of locales 
may prove to be very useful in this regard. 

2. ACQUISITION OF 
IMAGERY 

Solid state imaging mays, such as are used in CCD 
array cameras, provide primary data acquisition of 
high quality quanitized imagery. Calibration of CCD 
arrays has shown that array element spacing is 
regular. even by photogrammetric standards (14,3,2]). 
The precise spatial sampling is due to the regularity 
and resolution of the photolithographic process used 
in the micro-electronic industry to fabricate the 
imaging arrays. The rigid and planar construction of 
the die (the term used for the tiny piece of silicon 
containing the electronics within the "chip" package) 
further enhances the geometric of array 
imagers. 

An individual sensor in an array accummulates 
electrons in a potential wen formed by electrodes 
overlaying the photosensitive material. The number 
of electrons per the is 

sensor in 
about electrons in its 

[6,13]. Photodetection in CCD's 
behaves like shot noise so that the variance 
in the electron count when a fixed luminous flux 
falls on the sensor is to the expected number of 
electrons An quantization scheme 
then, may be to set the unit intensity equal to the 
RMS deviation in the charge number. With an 
eXIJected electron count of 100 thousand. this gives 

qmmtization levels with an RMS deviation of 
one There are two other main sources of noise 
witbin the sensor; dark current and readout noise. 
Dark current noise is by thermal energy. 

some cameras to reduce this 
effect levels are /Sv •• v ........ Jl3 

available at room with reasonable 
Readout noise levels 

AUvUA'U'" used to move the charge from the 
to the electronics. Terms 

In1<'."I->,., .... and 
Plasma to readout methods. A typical 
readout noise level is less than 100 electrons [8,13], 
COIlISe<1IUeiltlv readout noise is at 
very levels. 

lUUB.VU",,-U solid state array sensors are physically 
ammtized in both and intensity, the physical 

quantization is not realized in 
the image. The electron count in a 
sensor converted to an amplified voltage signal by 
the camera circuitry. Besides the noise and distortion 
added to the intensity signal by the carnera circuitry, 
the is usually further modified flltering to a 

of less than 5 MHz (about the pixel 
rate). Under these conditions, a digital (piece-
wise constant) image signal is never output. Note 
that !his of the raw array sensor data 
ocurrs in the camera and not in the imaging array 
itself. True "digital cameras" could be made which 
output a higher quality signal but commercially 
available carneras are designed according 10 image 

stardards set by the characteristics of human 
ooI'cetJtic)ß rather than the capabilities of 

In principle, of the characteristics of the 
camera electronics would allow one to recover most 
of the raw image signal available at the chip but, 
unfortunately, the common use of the RS-170 video 
signal stmdard to transfer the image to a frame grab 
card digitizer) ultimately eliminates such a 

The RS-170 signal does not have 
a synchronous dock, thereby 

discardinlg most of the integrity integral to 
the solid state imaging array. Without a synchronous 

the must interpolate the position of 
het'wex.m the start of successive line scans. 

does the frame lack the nec:essary 
infornnation to of it 



J",""' ......... ,tllU 1 does not the number per 
transmitted by the camera. The frame .grab 

simply resamples the line These 
problems have been thoroughly in 
assessments of the use of for 
photogrammetric purposes, as in 

There are two basic approaches to overcoming the 
10ss of geometric fidellty imposed by commercial 
digital image acquisition signal analysis and 
specialized electronic It has been shown for 
ex~unJ>le, that by clever analysis of the image 

the horizontal introduced by the 
digitiz,er's resampling can be determined. hence 
corrected for [14]. Small targets can thus be 
positioned to an accuracy of about l/6Oth of a pixel. 
With electronics, one expect 10 do 
better 

3. SUB-PIXEL IMAGE PROCESSING 

v .... "' .... öa,IUV!!.:') into attainable sub-pixel 
pos:iticm estimation in digitaHy reconstructed 

such as [18], have indicated that sub-pixel 
measurement is but the level of 
performance which can be attained is a debatable 
issue. 

A difficulty with eml>mc:a! 
only strictly true for system 
configuration used for experiment and they are 

assured of being optimal in any sense. 
Theoretical investigations on the other hand. tend to 
be idealized and optimistic. Neither empirical nor 
theoretical investigations have given a good 
framework of knowledge about sub-pixel position 
estimation which can be assimilated by the 
practitioners of the art. While there have been some 
important advances in terms of theory and practice, 
([5,4,12,17], to mention a few) thefe is a lack of 
cohesion or common basis on which they can be 
purviewed. The "locales theory" introduced in 
may provide some of the required common ground for 
the important problem of sub-pixel position 
estimation. The locales theory introduces abound for 
geometric precision against which other analysis and 
methodologies may be collectively compared. 

It is worth emphasizing perhaps. that the issue of 
sub-pixel position estimation can generally be 
isolated to just two components of the overall image 
processing task, namely the acquisition of the digital 
Image and the sub-pixel position estimation 
algorithm itself. There are many other steps, as 
figure 1 indicates, which do not directly involve sub­
pixel considerations. The position of a target may in 
fact be estimated twice, once in the course of 
detection or recognition, wherein an approximate 
pixel location is determined, and again during precise 
sub-pixel position estimation based on the raw gray 
scale image dam. In this context. it is important that 
sub-pixel estimation be clearly distinguished 

from the tasks of detection and recognition. It will be 
assumed throughout this paper that target position is 
known 10 approximately one pixel; it is the task of 
sub-pixel position estimation 10 improve upon the 
rough estimate. 

IMAGE ACQUISITION 

ENHANCEMENT 

SEGMENTATION 

EXTRACTION 

FIGURE 1. 
IMAGE PROCESSING STEPS FOR 

POSmON EXTIMATION 
(AFTER EL-HAKIIvi [9]) 

4. LOCALES 

This section will begin with abrief discussion of the 
history and terminology of locales. The concept of 
illocales" was developed in [11] for arbitrary targets 
and at abaut the same time for the more restricted 
case of binary line segments encoded by chain codes 
[6]. The idea is simple and useful: a locale is a region 
within which the object (target) may be moved 
without causing any change to its digital 
represenmtion. The term "domain" used by Dorst and 
Smeulders [6] refers to a region in a transformation 
space of object position, but the principle is the 
same as for locales. The term "feasibility region", as 
adopted by Berenstein et. al. [1] for the object­
position equivalent of the 11 domain ", is the same as 
locale. Feasibility regions will be introduced in 
section 8 in the context of locale construction, 
whereby the former are intersected 10 generate the 
latter. 

Interest in locales arises from the fact that the locale 
size determines the position uncertainty due 10 
quantization and the locale center is the optimal 
position estimate in terms of minimizing 
quantization errors. 

Just what is a "locale"? Consider the following 
example. A small dot might appear in a digital image 
as a sampled and quantized Gaussian function Q(ij), 



• 2. 2 

Q(i,j) = LAe -(i+X) -(j+y) J 

where Ais the amplitude of the dot, (x,y) is its 
position, (ij) are pixel indices, and the peculiar 
brackets indicate integer truncation. A commonly used 
estimate of the x -axis of the centroid is given by the 
"center of mass" calculation: 

- l:iQ(i,j) 
X=---

l:Q(i,j) 

with the summation being over an i and j between 
some values (-1 and +1, say). It is obvious that if the 
object's position is consttained to a square (pixel) 
such as Ixk1/2, lyk1/2, then the x-position estimate 
can have only a finite number of values. In 
particular, if l<A<2 then these values are ( 0, ±1/2, 
± 1/3 }. Due to symmetty, the same is triIe of the 
estimate of the y-axis of the centroid. The possible 
combinations of (x,y) estimates are restricted to only 
13 values, which are shown as dots in figure 2. The 
regions delineated in the figure are the locales wbich 
correspond 10 each of the estimate values. Note that 
ANY position estima10r will have no more than 13 
possible values, (with (x,y) constrained to the unit 
square, 1<A<2, and no noise present), since there are 
only 13 possible digital representation for the object. 

FIGURE 2 
LOCALES WITH1N A UNIT SQUARE AND 
LOCATIONS OF THE CORRESPONDING 

POsmONESTIMATES 

The presence of noise will complicate the situation. 
Detailed analysis of locales in the presence of noise 
is beyond the scope of this presentation, but it 
should be realized that noise can be incorporated into 
the basic theory in an approximate manner by 
defining the number of effective quantization levels 
(dynamic range) to be the number of digital levels 
divided by the number of levels spanned by the 
additive noise. The primary applications of the theory 
are the estimation of quantization uncertainty and 
optimal position estimation. Both will be seen to be 
robust to noise. A more detailed discussion of locales 
can be found in [10]. 

The concept of locales can be easily extended from 
regions of object position 10 higher dimensional or 
more abstract parameter spaces. For example, the 
position of an edge (ignoring end-points or assuming 
it is infinitely long) can be expressed in terms of its 
slope and distance from the origin. These two 
parameters can be used to construct a locale pattern 
for a straight binary or grey level edge. It is then 
possible to establish bounds on the position and 
orientation of the line as wen as an optimal estimate 
of the two parameters. Further elaboration on this 
example will not be presented but the reader is 
invited (challenged) 10 construct the locale pattern 
based on the discussion in the following section. 

s. GENERATION OF LOCALE 
PATTERNS 

The locale patterns are generated from the contours of 
the target, as explained in [11]. The Gaussian dot 
discussed in the previous section can be represented 
by con1ours with unit intervals which form 
concentric circ1es. Using the center of a pixel as the 
reference origin, the con1ours are drawn concentric to 
the origin to represent the target at position (0,0). 
Displaced versions of tbis contour pattern are then 
overlaid on the original one 10 get the locale map. 
The displaced versions are generated by moving the 
contour pattern so that it is concentric with each of 
the other pixels in the analysis window. For a 3 by 3 
window, 9 copies of the basic contour pattern are 
overlaid to get the finallocale map. This is how 
figure 2 was generated. except that the resulting 
overlaid contours were ttuncated at the boundary of 
the unit pixel. 

In the case of higher dimensional position spaces 
(three dimensions) the same procedure is used to 
generate a multi-dimensional mesh of locale volume 
elements. In the case of three dimensional position 
(x,y,z) for the Gaussian dot, with z along the optical 
axis of the imaging camera, the basic contour pattern 
is a set of concentric cones. This pattern is replicated 
by translation in (x,y), then the replicas are all 
merged to form the locale pattern of volume 
elements. 

If the coordinates are parameters (such as orientation 
or size) rather than object position then the 
translation of the basic 11 con1our" pattern when 
constructing the replicas is based on the position of 
the centers of the image pixels in the selected 
parameter space. Detailed or formal discussion of the 
more abstract representation of locales is beyond the 
scope of tbis paper. but the generality of the concept 
of locales should be noted. 

The basic method of generating locale patterns is 
very simple. It provides an easy method of 
appreciating the distribution of quantization induced 
position uncertrunty for any target, no matter how 
complex the target is and no matter how many gray 



levels it hase It is that the shape of the 
locale pattern is affected by subtle 
changes in the size, orientation of the 
target As will be discussed in the next two sections, 
this sensitivity is not carried over into the two main 
applications of the bounds on precision and 
position estimation. 

6. USING LOCALES TO ESTIMATE 
PRECISION 

The uncertainty in target position caused 
quantization is fully characterized by the 
pattern for the The size and shape of each 
locale reflects the uncertainty in position for the 
target when it is positioned within the locale. Bach 
Iocale may have a different so the nnr·prl<:lH"b1tu 

may vary with object position. the 1S In a 
smalliocale then the position uncertainty due to 
quantization will be small. If the object is located in 
a !arge locale then the uncertainty may be so large 
that it dominates allother error sources. 

The locale pattern is generally so complex that it 
cannot be easily used directly to indicate uncertainty; 
it is necessary to reduce the pattern to one or two 
quantifying parameters. One useful parameter is the 
RMS position error due to locale size and another is 
the largest possible position error, which occurs in 
the largest locale. Rigorous determination of either of 
these parameters is not a simple problem but 
approximations and bounds are available. A simply 
computed and useful measure of the quantization 
position uncertainty is given by the "lineal bound" 
on the number of Iocales. as derived in 

If there are N Iocales along a line segment (the line 
segment being in object-position space), and the 
length of the line is L, then the size of the largest 
locale (in terms of its intersection with the line 
segment) must be less than L/N. Furthermore, the 
minimal RMS error is achieved when all the loeales 
have the same size, giving an RMS size of 
L/(N-V 12). In either case, the measure of position 
uncertainty is seen to vary as the inverse of the 
number of Iocales along a line. A method for 
estimating N is presented below. 

The value of N for a straight line parallel to the x­
axis will give a measure of the position uncertainty 
in the x direction. The same can be done for position 
uncertainty in the y direction. The value of N can be 
easily determined from the contour map of the target, 
as folIows. Draw the contour map and scribe 
horizontallines across it with a line spacing equal to 
the pixel spacing (see 3). The number of 
contours crossed by the will equal the number 
of locales per unit length along any of the horizontal 
lines [11]. There are several technical provisos hefe, 
which are of little consequence in practice. The first 
is that the value of N depends somewhat upon the 
vertical position of the set of but the 

sm all and a solution is 10 take 
to line position. The second 

proviso with to the method of counting 
locales whose boundaries have multiplicity greater 
than 1 ([11]). This situation arises, for example, 
when one considers targets such as vertical or 
horizontallines. In practice, noise from sources other 
than tends to eliminate this effect 

FIGURE 3 
COUNTING THE STARS GNES THE UNEALBOUND 

FOR THE NUMBER OF I..,(XALES ALONG 
ANY OF THE HORIZONTAL LINES. 

As the size or shape of the object is changed slightly. 
the Iocale pattern may change radically. The lineal 
bound on the other hand, does not change 
significantly unless the target size or shape varies 
significantl y. 

The method of determining the lineal bound makes it 
obvious that position uncertainty generally decrease 
in a linear fashion with the number of useful 
qmmti.zatlOn levels and with the size of the target 

has been verify by simulation using the optimal 
pmnt1(m estimation techniques discussed in the next 
section. 

1. USING LOCALES FOR OPTIMAL 
POSITION ESTIMATION: 
"POSITION DECODING" 

It has been shown [4] that the "best linear unbiased 
estimate" for target postion is by the centroid 
of the locale. The performance of a position 
estimation algorithm with regard to quantization 
noise can be formulated as the deviation of the 
algorithm's position estimates from the locale 
centroids. There are two causes for an algorithm's 
shortcomings in this performance; aggregation of 
locales and bias. Aggregation of locales results when 
the position estimate is identical for two different 
Iocales. In this case, the estimate-Iocales, which are 
regions of object position which are indistiguishable 
by the estimation algorithm, consist of collections of 
the Iocales defined by quantization alone. 
Aggregation can occur when some pixels are 
disregarded or treated with "reduced significance" . It 
can also occur as a result of loss of numeric precision 
in the estimation algorithm. Bias, on the other hand, 
is the difference between the estimate and the actual 
centroid of the estimate-locales. It has been found for 



the Gaussian dot and a processing window of 3 by 3 
pixels, for example, that the position estimate given 
by the center of mass calculation has aprecision 
which is limited 10 about 0.04 pixels due 10 its 
inherent bias [10]. In general, the need for an 
estimation algorithm which is optimal in the sense 
of minimal quantization errors is only apparent when 
addressing very high precision position estimation 
work. 

The optimal algorithm called position decoding uses 
the image of the target 10 determine the locale 
corresponding to the target's position, 'then uses the 
centroid of the locale as the position estiniate for the 
target. The term position decoding is based on the 
similarity 10 the problem of decoding a signal 
received on a communication line, wherein the 
incoming waveform is interpretted as a code which is 
then decoded 10 give the transmitted character or 
message. The image of the target corresponds to the 
signal, the locale corresponds 10 the code, and the 
centroid of the locale corresponds 10 the decoded 
message. Due to the corrupting influence of the 
communication channel, the Selection of the code is 
generally probabilistic. There are many more 
possibilities for received signals than there are for 
legitimate codes. Typical approaches in 
communications theory to selecting the best code for 
a give signal are to use the Maximum Likelihood 
Estimate (MLE), or the Maximum APosteriOri 
estimate (MAP). Similar statistical techniques can be 
incorporated into the position decoding algorithm for 
locales but for brevity, this paper will concentrate on 
the basic decoding algorithm in the absence of noise, 
corresponding 10 a non-corrupting or noise free 
"communication channel". 

8. TUE POSITION DECODING 
ALGORITUM 

In this section the key elements of the position 
decoding algorithm will be discussed. The position 
decoding algorithm begins by establishing an ordered 
list of pixels, which are analogous 10 a serially 
received signal on a communications line. The 
ordering of the pixels is arbitrary in principle, but 
superior implementation of the algorithm is achieved 
if the pixels are ordered so thatthose pixels 
containing the most "position information 11 are 
placed first in the list 

Starting with the flrst pixel in the list, the algorithm 
establishes the "feasible region 11 associated with the 
pixel. The feasible region is deflned as the set of 
possible target positions which could result in the 
observed pixel value for that specific pixel. The 
feasible region is determined from the contour map of 
the target in a manner similar to the method for 
generating locales (section 5); with the contour map 
centered over the specified pixel, the feasible region 
is given by the contour level corresponding to the 
observed pixel value. The search for sub-pixel 

position is generally restricted 10 a small area such as 
a unit square, which may be assumed without loss of 
generality to be centered about the origin. The 
feasibility region used by position decoding is the 
intersection of the unit square and the region given 
by the selected contour level. An example of such a 
feasible region is represented in figure 4. 

FIGURE 4 
A FEASffiLE REGION WITIDN 

1HE UNIf SQUARE 
(BLACK = "TRUB'') 

The feasible region is maintained in computer 
memory in the form of a Ittruth map". Each ceU of 
the truth map is set true if the center of the cell is 
within the feasible region. Efflcient approaches to 
this will be discussed in the next section. 

Position decoding processes each of the pixels in the 
pixel list, in succession, progressively restricting the 
number of true cells in the truth map by intersecting 
the feasible region of each new pixel with the old 
region given by the truth map. The intersection of 
successive feasible regions is depicted in figure 5. 

+ 
FIGURE S 

INTERSECTING FEASffiLE REGIONS 
(BLACK = "TRUB'') 

B Y considering the methodoly discussed in seetion 5 
regarding the generation of the pattern of locales for a 
target from the contour map of the target. it can be 
seen that this procedure will ultimately lead 10 the 
extraction of the Iocale corresponding to the observed 
image of the target. The truth map will be a raster 
representation of the Iocale, from which the optimal 



FIGURE 6 
SUCCESSIVE INTERSECTION OF FEASmLE 

REGIONS TO OBTAIN THE LOCALE 

It has been seen that the locale is 
sensitive to small variations in shape 

It would seem then, that the position dec:oomg 
alglorit,hm would be sensitive to the deviations 

contour map of the target from 
either due to distortion, or lack of accurate 
repreSlentitioifi. This is alleviated by 
recording in the map the relative probability , 
for of the contour map, that the was 
located there. A scale of is 
aeIJJlct(~a in 

FIGURE 7 
USE OF PROBABILTIY DISTRIBUTION 

FOR FEASmILITY REGIONS 

The probability used in the truth map might be 
exponential with repect to the magnitude of the 
difference between the observed pixel value and that 
of the contour levels. The truth map then represents a 
portion of the probability distribution for the spatial 
coordinates of the target given the pixel value. 
Successive pixels are appropriately combined by 
point-wise product of the probability distributions for 
their independent pixels. 

It is more practical to store the logarithm of the 
probability distribution, that is; the square magnitude 
difference between the observed pixel value and the 
contour level. In this case, the joining of the 
information from successive pixels is achieved by 
summing the corresponding log-probabilities. This 
results in a straightforward algorithm which 
iteratively updates a "truth map" of numbers. Mter 
all the pixels have been processed, the region within 

the truth map defined by all those ceUs with the 
AUI"UV,"" value is tiken to be the locale for the target 

The possibilities for tuning and refining the 
aigorithm are many fold. The selection of the list of 
pixels can be done so that the most useful ones 
appear fIrst. For example, symmetrically opposed 
pixels can be processed in succession to tike 
advantage of a symmetric target shape, or pixels 
occuring where the image has maximum gradient can 
be selected fmt since these generally contain better 
positional information. As the feasible regions are 
intersected. and the candidate area of the locale 
diminishes in size, processing can be terminated at a 
preselected tolerance, thereby avoiding the processing 
of unnecessary pixels. Pixels which yield no highly­
likely cells in the truth map can be deemed defective 
and eliminated from the analyis. Various probability 
measures and pixel weights can be tailored. Occluded 
or missing pixels present no obstacle to the 
completion of the algorithm. 

The algorithm has been implemented with simulated 
target images and noise, without elaborate tuning, 
and its performance has been extremely robust and 
near-optimal. The ease with which good performance 
is achieved has been impressive. 

9. COMPUTATIONAL 
CONSIDERATIONS 

The truth table is the primary storage element of the 
position decoding algorithm. To economize on space 
and associated processing, the truth table is allocated 
only about 15 cells on a side. that is; the unit square 
representing the area of a pixel is divided into about 
225 ceUs. Since locales tend to be sm aller than this 
cell size, a method is needed to ensure that at least 
one cell is selected by the intersection of feasible 
regions. This is accomplished by storing the log­
probability in the truth table and selecting- the ceH(s) 
with the highest probability . Once the truth map has 
been evaluated for all the pixels, the process is 
reiterated with the resolution of the trutb map 
increased and centered over the previously selected 
ceHs. At each iteration position decoding provides a 
better estimate of the shape and location of the 
locale. This process of incrementally increasing the 
resolution of the truth map is continued until either 
the cell size is less than .001 or the locale is clearly 
resolved (extends over about 1/3 of the truth map). 

Iterative refinement of the truth map not only saves 
storage space, it dramatically reduces the number of 
ceUs which must be evaluated and updated during the 
processing. A further reduction is achieved by 
processing only those cells which have a sufficiently 
high probability value. 

Associated with the processing of each ceH of the 
truth table is an evalutation of the contour map 
representing the target It is importmt that this 



representation be computationally effident The most 
effident method of representation generally varies 
with the form of the target. In the case of a Gaussian 
dot for example. a sm all table of the radii of the 
concentric contours is both compact and effident. 
More complex targets such as corners or crosses 
convolved with the imaging system's response 
function may require careful consideration to obtain 
effident evaluation. 

The robustness of the algorithm, as implemented for 
the simulation studies, is acheived largely through 
the use of a tolerance threshold in the truth map. The 
threshold spedfies how low the cell probability can 
go before the cell is disregarded from further 
processing. This involves more processing effort 
than simply retaining only the cells with the highest 
probability . The modification is necessary because 
the best choke of locale may welilie outside the 
"most feasible" region for some of the pixels. 

The position estimation algorithm was implemented 
using a 3 by 3 pixel window to locate a Gaussian 
dot. It typically executes in about 2 seconds per point 
and evaluates approximately 3000 ceIls to achieve an 
accuracy of better than one hundredth of a pixel. 

10. COMPARATIVE PERFORMANCE 

The Gaussian dot was selected for comparative 
performance tests for several reasons; it is easily 
processed by a number of algorithms, it's radial 
symmetry allows reduction of performance measures 
to one-axis parameters, and it is a fairly realistic 
representation of a target. The processing window 
was restricted to a 3 by 3 square. For the Gaussian 
dot as described in section 4, this modest processing 
window will span the non-zero portion of the target 
for any amplitude less than 54. The limited scope of 
the comparison is acknowledged and the need for 
further simulation and real-data performance 
evaluation is emphasised. Nevertheless, the results 
suggest that the algorithm will provide exceIlent 
performance under varied conditions and will function 
weIl with real data. 

The algorithms to whkh position decoding is 
compared are; linear interpolation, Fourier phase 
estimation and centroid estimation. The results of the 
comparison with and without noise are presented in 
figure 8. 

Linear interpolation takes advantage of the fact that 
the log of the ratio of the pixels on the left and right 
sides of the window is a linear function of the x-axis 
position of the Gaussian target. To reduce the bias in 
this estimate, quantization was first converted from 
integer truncation to rounding by adding 0.5 to the 
quantized value. This algorithm performed quite weIl. 
showing continued and rapid performance 
improvement with the number of quantization levels. 
Noise reduced its performance only slightly. 
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FIGURE8a 
Position estimation errors for the 
Gaussian dot. The lineal bound is 
determined by an estimate of the 
locale density. The reciprocal RMS 
position errors are shown for four 
estimators; (a) position decoding, 
(b) linear interpolation, 
(c) Fourier phase estimation and 
(d) centroid estimation. 

FIGURE8b 
Position estimation errors for the 
Gaussian dot in the presence of ±1 bit 
of noise. The reciprocal RMS position 
errors are shown for four estimators; 
(a') position decoding 
(b') linear interpolation, 
(c') Fourier phase estimation, and 
(d') centroid estimation. 
Fm comparison, the 'lineal bound' and 
(a) position decoding without noise are 
also shown. 



Fourier phase estimation is based on the principle 
that the phase of the Fourier transform of an image is 
a linear function of the displacement. The reference 
image of the target (the entity function [11]) and the 
observed image are divided pixel by pixel. The phase 
of the resultant complex-valued image is a linear 
function of pixel coordinates with a slope 
corresponding to the position of the target. A least 
squares fit to the slope of the phase is used as the 
position estimate. As noise is added, the otherwise 
erratic performance curve of Fourier phase estirnation 
is smoothed somewhat. The method does not perfonn 
well until the number of quantization levels gets 
quite larget at which point it surpasses the center of 
mass method of calculating the centroid. 

Centroid estimation is done using the "center of 
mass" calculation as was discussed in section 4. This 
estimate is straightforward to compute. Explicit 
calculations have shown that for the 3 by 3 window 
it exhibits abound of 24 on its reciprocal RMS error 
in the absence of quantization. With coarse 
quantization, trus bound is exceeded to a level of 
about 35 (with 14 quantization levels), illustrating 
the perversity of quantization effects. 

Position decoding is consistently and clearly superior 
to the other algorithms both with and without noise 
and at all quantization levels except possibly near­
binary. Improvement with the number of 
quantization levels is extremely linear (up to an 
beyond 100 quantization levels), as predicted by the 
optimality criterion of the locales theory. Noise 
degrades performance somewhat but linearity is 
preserved. The gap between the lineal bound and 
optimal position estimation in the absence of noise 
can be attributed to the fact that the lineal bound is 
based on the limiting assumption that all of the 
locales have the same size. It is reasonable to 
speculate that the divergence of the two curves can be 
derived from knowledge of the distribution of locales 
sizes (or perhaps even the converse). 

SUMMARY 

The possibility of acquiring very high quality digital 
imagery brings the analysis of quantization effects 
into the forefront of digital image metrology. Sub­
pixel position estimation to very high levels of 
precision are possible in theory. A foundation of 
solid principles is needed for the effective 
accummulation of knowledge and experience in high 
precision measuring techniques. The theory of locales 
is potentially such a unifying basis. Locales are 
simply defined and easily generated. They serve to 
estimate position as well as the position 'uncertainty 
due to quantization. They lead to a natural and easily 
stated definition of optimal position estimation. The 
optimal position estimation algorithm called 
"position decoding" has been introduced here for the 
first time. Preliminary performance simulations have 
shown it be an effective tool for digital image 
metrology. 
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