
CONCURRENT ARCIDTECTURES and IDGH RATE DATA PROCESSING

Meemong Lee

Jet Propulsion Laboratory
California Institute of Technology

Pasadena Ca U.S.A.

ABSTRACT

High rate data processing is extremely challenging since it requires fast computation,
large data storage, and fast data access simultaneously. In order to meet these challenges,
computer technology has evolved toward concurrent architectures where multiple processing
elements are integrated for parallel execution of data. Processors may communicate through a
shared memory system or may communicate directly to neighboring processors via a com­
munication network. The performance characteristics of a system depend on the processor
connection topology, memory organization, and synchronization mechanism of the system.

Implementation of a data processing algorithm in a concurrent system requires decompo­
sition and/or reorganization of the algorithm according to the characteristics of the concurrent
system. It is critical to employ a concurrent system whose systematic characteristics are com­
patible with algorithmic properties in order to minimize the decomposition/reorganization
effort. This paper presents a methodology of analyzing the algorithmic properties with respect
to their implementational constraints in a concurrent architecture.

INTRODUCTION

The main objective of any concurrent architecture is to employ multiple processors for
improved computational power. A concurrent system can be characterized based on the pro­
cessing element (bit ALU, 32 bit CPU, etc.), memory organization (shared memory, local
memory, data/program memory, etc.) interconnection topology (ring, grid, hypercube,
crossbar, pyramid, etc), and control mechanism (synchronous, asynchronous). The system
characteristics present a unique set of requirements and limitations to algorithm implementa­
tion.

A set of analogies between algorithmic properties and concurrent system architectures is
developed. They are: 1) operational complexity vs. processing element's capacity, 2) level of
data locality vs. interconnection topology, and 3) level of algorithmic homogeneity vs. system
control mechanism. The operational complexity varies from a bit manipulation to a double
precision number operation. The data locality implies a spatial connectivity of data and the
level varies from a pixel level with no connection to a non-local level with multi-dimensional
connection requirement. The homogeneity is an operational synchroneity and the level is
determined based on the complexity of the operation.

A methodology that analyzes the properties of an algorithm with respect to the opera­
tional complexity, data locality, and homogeneity is presented based on various high rate data
processing algorithms. Implementational constraints of the data processing algorithms on

11-465

concurrent systems are examined employing two types of concurrent architectures. A GAPP
(Geometric Array of Parallel Processors) system is employed to examine the applicability of a
SIMD(Single Instruction on Multiple Data) architecture with a simple interconnection topol­
ogy. A JPL/Caltech MARK III hypercube is employed to examine the applicability of a
MIMD(Multiple Instruction on Multiple Data) architecture with a high dimensional intercon­
nection topology.

DATA PROCESSING ALGORITHMS

There are parallel analogies between the algorithmic characteristics and concurrent com­
puter architectures. They are operational complexity vs. processor's capacity, data locality vs.
interconnection topology, and homogeneity vs. synchronization. Algorithms of three major
high rate data processing areas, including, planetary data, multispectral data, and synthetic
aperture radar data, are examined with respect to their operational complexity, data locality,
and homogeneity.

1. Systematic Processing of Planetary Images

The planetary images taken by a camera (Vidicon or CCD) on a spacecraft have a set of
distortions due to the camera system's response characteristics in amplitude, frequency, and
spatial relations. The distortions are removed systematically via radiometric correction, MTF
(Modulation Transfer Function) restoration, and geometric correction[!].

Radiometric correction is to calibrate gain and offset of a camera system. The Gain(G)
and offset(o) is a function of pixel location and the corrected pixel intensity (I') can be
expressed as below.

I'(x,y) = (I(x,y) - o(x,y)) I G(x,y) (1)

The response of the modulation transfer function (MTF) of a camera lens attenuates high
frequency features. A high pass filter may be applied to compensate the attenuation in a fre­
quency domain as well as in a space domain. The MTF restoration using a frequency domain
high pass filter W on an image A is expressed in equation 2 where FFT and CONJG imply a
Fast Fourier Transform operation and conjugation of a complex array respectively and B is the
restored image.

B = FF11
(FFT(A) CONJG(W)) (2)

A spatial domain high pass filter applies a convolution kernel w directly to an image as
shown in equation 3. Thew is a truncated Fourier transform of W with the size of wl by ws.

i=wl j=ws

B(x,y) = I, I, w(iJ) A(x-i+ws/2, y-j+wl/2)
1=1 j=l

(3)

The spatial response characteristics of a camera system introduce geometric distortion
which affects the uniformity of the spatial relation among pixels. In order to detect the distor­
tion characteristics, a set of reseau marks are placed on the view plane of a camera system in
the form of a grid. The locations of the reseau marks in the image plane describes the

u 4ss

geometric response of the camera system. The geometric distortion is removed by inverting
the geometric relation between the locations of reseau marks in an image plane and the view
plane.

A first order geometric transformation describing the distortion is computed based on
four reseau marks as shown in equation 4.

x' = AM and y' = BM (4)

where M, A, and Bare defined to be

M = [1, x, y, xy] A = [a1, a2, a3• a4] and B = [b1, b2. b3, b4 J

The geometric coefficients, A and B, are computed by applying a set of four reseau mark loca­
tions in the view plane and the corresponding locations in the image plane for (x,y) and (x',y').

The geometric correction process is applied for an area formed by four reseau marks at a
time. The correction process consists of pixel location computation using equation 4 and pixel
intensity estimation. The intensity is estimated using bilinear interpolation based on four
nearest neighbor pixels as described in equation 5.

I(x,y)= I(x'z,y'z) + dy[dx(l(x'u·Y'l)-/(x'u,y'l))- dx(l(x'z,y'u)-I(xu,Yu))] (5)

dy = y - Yz and dx = x - xz

where the subscript l and u imply lower and upper integer limits of a given real number.

2. Spectral Feature Classification of Multispectral Data

Multispectral data provide higher and wider wavelength resolution information than opti­
cal images, such as planetary images. Current imaging spectrometer technology (A VIRIS­
Airbome Visible and Infrared Imaging Spectrometer) allows remote sensing of 224 wave
length channels over an 18 km wide swath instantaneously. The systematic processing of
multispectral data is very similar to the planetary image case and repeated for every spectral
channel.

A significant portion of multispectral data analysis is devoted to "surface material
identification" where each spectrum is classified by mineral class, soil type, vagetation growth,
etc. . The material identification[2] is approached in three steps: 1) unique spectra sampling,
2) spectral feature classification and 3) geological classification.

Mineral identification process using imaging spectrometer data, is discussed here as an
example case of "spectra classification". First, each spectrum is encoded for its amplitude and
slope variation using the binary encoder described in equation 6.

(6)

where

11-467

Vj={~

Uj={~

if sj > s (average)

otherwise

if sj > sj-1

otherwise

A set of unique spectra, {us}, is composed based on iterative grid sampling method
where a regular grid is overlayed on an image and a sample is picked from each grid. The
sample is inserted to the set if it is found to be unique as shown in equation 7. This process is
repeated until the set is full.

X ~ USn+l if Hd(X,usk) < th for k=l,n and n < N (7)

where X is an encoded sample spectrum, Hd is Hamming distance, th is a similarity threshold,
and n is the number of spectral members in the set. Initially, n is set to zero.

The Hamming distance is defined to be
j=n j=n

Hd(X, Y) = ,L hv + ,L hu
j=l j=l

hv={~ if vj = VJ
otherwise

hu={~ if Uj= Uj

otherwise

Each feature encoded spectrum (X) is compared against the sample spectra (USi)) using Hamm­
ming distance (Hd) and its class is labeled as shown in equation 8.

X = k if Hd(X, USk) < Hd(X, USi) for all i and i -:;; k (8)

The mineral content of each spectral feature class is identified by comparing the class
average with a library of known mineral spectra.

3. Textural Scene Analysis of Synthetic Aperture Radar (SAR) Data

Active microwave sensors are playing a large role in remote sensing since they provide
physical and dielectric properties as well as some subsurface properties. These sensors can
operate independent of sun illumination and usually are not sensitive to weather conditions or
cloud cover[3]. One of the physical properties provided by SAR data is surface texture
characteristics. The texture information can be used to differentiate agricultural fields from
city areas, to identify ice types, to analyze ocean wave characteristics, and various other appli­
cations.

A texture is a regular repetition of pixel variations which can be represented in a regres­
sive filter[4]. In an interactive texture classification, a small area of an image representing a
texture type is selected as a training area and a texture pattern is quantified as a regressive
filter. The regressive filter algorithm assumes that a pixel is a linear combination of

11-468

neighboring pixels. The combination coefficients are determined based on inter-pixel relations.

The regression is controlled within a half plane window and the filter coefficients are
extracted from the autocovariance matrix of the training area. Equation 9 shows a 4 by 2
regression window filter(F) composed from a autocovariance matrix (C) of a training area(T).

cu c21 c31

c12 c22 c32

C = c13 c23 c 33

(9)

The above process is repeated for all texture classes in an image, then the regressive
filters are applied to the entire image and residuals from each filter are analyzed for the max­
imum likelihood for texture classificaion. The probability of the i-th filter residual (P(Ri))

belonging the the i-th class is computed as below.

P(R ())
__ fF= (R;(x)-M;)/cr;

i x - -v ""rccr; exp

Ri(x) = x - FiW(x)

(10)

where Mi and cri are the mean and the varaiance of ith training area and W is a half plane win­
dow surrounding the pixel x.

4. Homogeneity

Concurrent systems with synchronous control mechanisms require all processing ele­
ments to perform simultaneously while asynchronously controlled systems allow each proces­
sor to perform individually. Thus, a synchronous system can apply a single instruction on
multiple data while an asynchronous system can apply multiple instructions on mutiple data
simultaneously. For this reason, concurrent systems are classified as SIMD architectures and
MIMD architectures, in general.

A similar analogy applies to data processing algorithms. An algorithm that consists of a
uniformly applicable instruction set is a homogeneous algorithm while an inhomogeneous
algorithm consists of different sets of instructions applying to different parts of data. A data
procesing procedure may be composed of both homogeneous and inhomogeneous algorithms.
The homogeneous algorithms are divided into instruction level homogeneous algorithms and
function level homeogeneous algorithms depending on the complexity of the operation. A
SIMD architecture can be applied only to operations with the instruction level homogeneity
while a MIMD architecture can be applyed to inhomogeneous algorithms as well as algo­
rithms of both homogeneity levels.

11-469

The instruction level homogeneity implies that a simple arithmetic instruction, or a bit
manipulation instruction is applied to all data without exception. Among the data processing
operations, operations listed below have the instruction level homogeneity.

Radiometric Correction
MTF Restoration
Spectra Classification

: offset subtraction, gain division
: convolution kernel multiplication
: spectrum feature encoding

Hamming distance measure

Homogeneous operations that contain data dependency, conditional branches, or location
dependent parameter sets are classified as operations with function level homogeneity. These
operations can not be implemented on a SIMD architecture easily. Example operations with
function level homogeneity are listed below.

Geometric Correction
Texture Classification

: bilinear Interpolation
: residual and probability computation

Following operations are inhomogeneous operations and require more complicated con­
currency analysis for load balancing and synchronization.

Geometric Correction
Spectra Classification
Texture Classification

5. Locality

: geometric transformation computation
: unique spectra sampling
: regression filter computation

The interconnection topologies of concurrent systems allow a limited inter-processor
communication. Direct data communication channels provided by each system topology with
N processors are: no interconnection - 0, a ring - 1, a grid - 2, a hypercube - logzN , and a
crossbar- N. The communication between two unconnected processors can be performed via
several indirections. The indirect communication path length is inversely related to the dimen­
sionality of the system topology. In order to achieve a global communication in a system with
N processors, the number of processors involved in the indirect communication are: a ring -
N-1, a grid - 2W-1, a hypercube - Iog~-1, and a crossbar - 0. The inter-processor communi­
cation slows down significantly as the indirect communication path length increases.

Similarly, data processing algorithms have various data locality characteristics that can be
described in terms of topology. The topology of an algorithm's data locality can be classified
as: pixel level locality - no interconnection, template level locality - a grid , LogzN dimen­
sional locality - a hypercube, and non-local or N dimensional locality - a cross bar. The N

implies the number of data points. A system topology must have a higher dimensionality than

u ... 470

the data locality in order to provide necessary inter-processor communication directly. When
an algorithm's data locality has a higher dimensionality than the implemented system's topol­
ogy, the concurrency is decreased since the communication must be performed indirectly.

Operations listed below have the pixel level locality, thus they can be implemented in a
concurrent system with any interconnection topology including no interconnection. A spec­
trum is treated as a pixel with multiple intensity values in this analysis.

Radiometric processing
Spectra Classification

Texture Classification

: offset subtraction, gain division
: spectrum feature encoding

Hamming distance measure
: probability computation

Following operations have the template level locality. Concurrent systems with a grid or
a higher dimensional interconnection topology can provide necessary data communication for
these operations.

Geometric Correction
MTF rectification
Texture Classification

: bilinear interpolation
: spatial convolution
: residual computation

The Fast Fourier Transform employed in the MTF restoration has Log-fi dimensional
locality. Most non-homogeneous operations have no data locality either. Algorithms with an
irregular data connectivity requirement can be classified as algorithms with no locality or N

dimensional data locality since an arbitrary data connection can be met by an N dimensional
spatial connection. Algorithms with a high dimensional data locality can not achieve the
optimal concurrency of a system due to the increased data communication time.

Besides the interconnection topology of a concurrent system, the size of a local memory
plays an important role in data communication. The frequency of data communication
decreases as the local memory size increases since multiple data can be stored in one proces­
sor. When a processor has a very large local memory, the system can provide a wide range of
data interconnection within a processor. Thus, the combination of the interconnection topology
and the local memory size determines the system's compatibility to the algorithm's data local­
ity characteristics.

IMPLEMENTATION ON CONCURRENT SYSTEMS

Based on the analysis of analogies between data processing algorithms and concurrent
architectures, it is obvious that a concurrent system can offer its optimal concurrency when
the system architecture characteristics and the properties of an implemented algorithm are
compatible. The lack of compatibility may complicate the algorithm implementation process
and affect the system performance.

For implementation of data processing algorithms on concurrent systems, the algorithms
are divided into two classes. The first class algorithms have properties of an instruction level

u 1

homogeneity and a pixel or a template level data locality which can be implememted in a
SIMD architecture with a grid interconnection topology. The second class algorithms have
properties of a function level or no homogeneity and a higher dimensional data locality which
require a MIMD architecture with a high dimensional interconnection topology.

NCR's GAPP system is chosen to implement the first class algorithms and a JPL/Caltech
MARK lli hypercube system is chosen to implement the second class algorithms. The imple­
mentation process is discussed with respect to the algorithm and data decomposition require­
ments and the system performance is analyzed for the time involved in data transfer, inter­
processor communication, and computation.

1. NCR GAPP(Geometric Arithmetic Parallel Processor) system

A GAPP system[5] is a SIMD architecture which consists of synchronously controlled 48
by 48 homogeneous processing elements. The processing elements are interconnected in a
grid topology allowing direct communication among four neighbors. Each processing element
consists of 1 bit ALU, 4 arithmetic registers, 4 communication registers, and 128 bit local
data memory. The system provides a separate controller board equipped with a system clock,
program storage area, a microsequencer, and a comer-tum buffer.

The main advantage of this system is in its massive concurrency achieved by the large
number of processing elements. The two dimensional interconnection topology also allows an
easy system upgrade by adding rows or columns to the existing system. However, the GAPP
system's processing element is very primitive and is not suitable for complicated operations.

Data flow characteristics of this system are complicated since the data have to be reor­
ganized from a word array into bit planes. First, a data segment is extracted from an image
array. The segment is transfered to the corner-tum buffer a row at a time. The corner-tum
buffer has 48 by 6 procesing elements with 128 bit of memory per each processing element.
The data which were originaly oriented in a word by row by column array (6 by 48 by 48)
are transfered to the GAPP memory and they are reoriented to a row by column by word
array (48 by 48 by 6).

A column of data is simultaneously transfered from the corner-tum buffer to the GAPP
memory as shown in figure 1. The west most registers of the corner-tum buffer are directly
connected to the south most registers of the GAPP array. A detailed description of the data
transfer is illustrated in the list of a 3 by 3 box filter program shown in figure 2. The data
transfer requires two programs, one to send data and one to receive data. The synchronization
between the two programs are performed as follow. Each comer-tum buffer processor loads a
bit to the ew-register (ew:=ram(i)) and each GAPP processor picks up from the south com­
munication register (cm:=cms). After the transfer process is repeated for 48 times for each bit,
an entire bit plane is transfered over to the GAPP array. The process is then repeated for each
bit by shifting the content of comer-tum buffer to west direction (ew:=w), thus completing the
word to bit reorientation.

The data transfer/reorganization time of a GAPP system (TaAPP_DATA) with Gr by Gc pro­
cessing elements is sum of the data transfer time between the host and the comer-tum buffer
(TcorMr-twn) and the transfer time within the GAPP system (T GAPP) as shown in equation 11.

11 ... 472

T GAPP _DATA = Tcormr-turn + T GAPP

(Gr Gc)
Tcorruzr-tum = Bn and

(Gr b)
T GAPP = ---;;;;--

(11)

where B8 and Ba are the data transfer rates of the host system interface and the GAPP system
and b is the number of bits in a word.

A microprogram instruction is executed per clock cycle on 48 by 48 bit data. Though 48
by 48 data points can be executed simultaneously, each word is processed in a bit serial
manner. Therefore, the concurrency factor decreases rapidly as the number of bits in a word
increases. The concurrency factor of a GAPP system (CaAPP) over a sequential system (TsEQ)

can be expressed as shown in equation 12 where N is the number of processing elements in
the system and b is the number of bits in a word.

CaAPP = TsEQ I (TaAPP_DATA + TaAPP_COMP) =NIb (12)

TaAPP_COMP::::: bIN

The main disadvantages of this system are difficulties involved in algorithm decomposi­
tion and bit plane data manipulation. An algorithm must be decomposed into homogeneous
bit instructions and a bit data plane must be manipulated synchronously following two dimen­
sional data communication rules. The architectural limitations of small local data memory
and a bit serial processor reduce the applicability significantly.

2. JPL/Caltech Mark III Hypercube

A Mark III [6] hypercube achieves concurrency in two levels, a node level and a system
level. The node level concurrency is from employing separate nodes for I/0, floating point
operation, and general program execution. The system level concurrency is from multiple
nodes interconnected in a hypercube topology for concurrent execution of multiple programs
on multiple data sets.

Each node of a Mark Ill hypercube has 4 Mbyte of local memory and 7 communication
channels allowing direct communication to seven neighboring nodes. Main advantages of this
system are its expandability per additional communication channel, capability of handling
non-homogeneous programs, and multidimensional connectivity.

The data processing algorithms are implemented by decomposing each algorithm into
two modules; host program module and a cube program module. The host program handles
the peripherral device I/0, such as file I/0, user interface, and display device interface, and
the cube program manipulates the data. A homogeneous cube programming where each node
has a copy of cube program is employed for the data processing algorithm implementation.
The homogeneous programming achieves balances the computational load for nodes via a
proper data distribution among nodes.

The hypercube topology offers a log2N dimensional data connectivity as shown in figure
3. The neighboring nodes are determined based on the fact that the Hamming distance of
binary representation of nodes is 1. Also, utilizing the hypercube connection, data can be
redistributed from one type of distribution to another by exchanging the data with neighboring

11-473

nodes as illustrated in figure 4. The flexibility of data distribution allows implementational
freedom of algorithms with various data localities. Also, the large local memory reduces
inter-node data communication significantly by allowing redundant data distribution so that the
data required by a node can be resident within its local memory.

The hypercube topolgy also allows fast propagation of data. Data may be downloaded
and/or uploaded in log~ steps for aN-node system. Figure 5 describes the data download and
upload path of a 8 node system. In step 1 of the data download path, node 0 passes data to
node 1, in step 2, node 0 passes data to node 2 and the node 1 passes data to node 3, finally,
in step 3, the nodes 0,1,2,3 passes data to nodes 4,5,6,7 simultaneously.

The time involved in transferring data with a size of D can be expressed in equation 13.

D D
TcuBE DATA=-+- logzN (13)

BH

where BH and Be are data transfer rates between host and the hypercube and within the
cube respectively.

The concurrency of this system is determined based on computation time (T cuBE_coMP)

combined with communication time (T cuBE_coMM) and data transfer time as shown in equation
14.

CcuBE = TsEQ I (T cuBE_DATA + T cuBE_coMP + T cUBE_coMM) ::::::: N

1
T CUBE_COMP ::::::: N

(14)

maximum concurrency factor achievable by this system approaches to the number of
nodes in the system for applications with insignificant data transfer and inter-processor com­
munication. When an algorithm is operationaly simple and is applied to a large data, the ratio
between TcuBE_coMP and the TcuBE_DATA is low, thus the achivable concurrency is low. Also,
when an algorithm requires data from non-neighboring node frequently, the communication
time increases and consequently, the concurrency decreases.

Programming difficulty in orchestrating the complex inter-node communication, load
balancing, and synchronization of multiple programs is a major disadvantage of a MIMD
architecture. For data processing algorithm implementation, a single program is applied n ,.

geneously, thus programming is somewhat simple. However, data distribution among nodes
that have the Hamming distance oriented physical connectivity becomes complicated
inter-node data sharing since the numerically adjacent nodes are not necessarily physical
neighbors.

SUMMARY

The compatiblility analysis between concurrent system architecture for various data pro­
cessing algorithms is presented by establishing a set of analogies between the architectural
characteristics of concurrent systems and algorithmic properties. The analogies are discussed
based on, relationships of processor capacity vs. instruction complexity, system topology vs.
data locality, and system synchronization mechanism vs. homogeneity. Each relation must be

compatible in order to achieve an optimal concurrency.

The system concurrency is measured based on the time required for data transfer, inter­
processor communication, and computation. A compatible concurrent system architecture can
minimize the time involved in inter-processor communication and computation. However,
most concurrent systems employ a sequential data I/0 mechanism from/to outside of the sys­
tem and the data transfer time becomes a dominant factor for high rate data processing appli­
cations. A concurrent system for a high rate data processing environment must provide con­
current data I/0 to remove the data transfer bottle neck as well as computational concurrency.

ACKNOWLEDGEMENT

This research was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

REFERENCES

1. K R Castleman 1979, Digital Image Processing, Prentice-Hall Signal Processing series

2. A Mazer, et all 1987, Image processing software for imaging spectrometry, vol 834, 136-
139, Proceedings of SPIE-The International Society for Optical Engineering

3. C Elachi 1987, Introduction to the physics and techniques of remote sensing, Wiley inter­
science

4. W M Lawton, M Lee 1985, Random field models for use in scene segmentation, Final
report for NASA fundamental research program (#677-24-41-04-36), Jet Propulsion Labora­
tory

5. NCR corporation, 1987, GAPP processor unit (Multi bus compatible card set) functional
specification

6. Tuazon J et all, 1988, The MARK III hypercube concurrent processor, Third conference
on hypercube concurrent computers and applications, Pasadena, Ca. U.S.A

11-475

word

b ,-------·="~
(6H4BH49l

(41lii4BII12B)

CORNER-TURN

IMAGE

(49H6H129) t

mJ-----...lf
Figure 1. Dataflow characteristics of a GAPP system

Figure 3. A 8-node hypercube connection

DOWNlOAD

flORIZONTfll DISTRIBUTION

UPLOAD

T T [TI

c1 f m QJ
~

m

T
[I]

~
QJ
I .,

Figure 4. Data distribution/redistribution
in a 4-node hypercube

Figure 5. Data download/upload in a
8-node hypercube

11-476

step I

step 2

step 3

step I

step2

step3

gapp.ct

I* Corner turn buffer program * I
image data: 0: 5;
lnt xsize = 48,

main()
{

I*

I*

I*

lnt

ysize = 48,
ma_length=600;

i, j, k. b;

Shift data from Comer Tum line buffer
to Main Array.

b = 6;
for (k = 0; k < b; k++) {

for (i = 0; i < y; i++) {
ew:=ram(:i);
ew:=w c:=O ns:=O;
ram(:i):=sm;

nop;

Perform NOP's while Main Array is
processing data.

for (i = 0; i < ma_length; i++) nop;

Shift data from Main Array to Corner

* I

* I

Turn line buffer. * I
for k = 0; k < b; kt-+

nop;

for (i = 0; i < y; i ++) {
ew:=ram(:i);
ew:=w c:=O ns:=O;
ram(:i):=sm;

Figure 2. 3x3 box filter gapp program example

gapll.pgtn

I* GAPP program "' I
image data: 0; 5;
lnt xsize = 48,

main()
{

,. ..

I*

ysize = 48;

image B: 6: 11;
lnt i, j, k, b;

Read data from Corner Turn line buffer
to Main Array

b = 6;
for (k = 0; k < b; k++) {

for (i = 0; < y; i++) (

}

nop;
cm:=cms;
nop;

ram(dest b - 1 - k):=em;

convolve(A,B) I* approx. 600 program steps "' I

Write data from the Main memory to
Conrner turn line buffer * I

for k = 0; k < b; k++) (
cm:=ram(source: b - 1 - k);

for (i = 0; i < y; i++) (
nop;

cm:=cms;
nop;

* I

gapp.sub

eonvolve(A.SUM)
image A
image SUM;
(

image scntch:8:
lnt x,y;
lnt scale;

c :"" 0;
for (x=O; x<size(SUM); X++) SUM:x ram:=c;

for(x""O; x<3; x++) {
for(y=O: y<3; y++) (

move(A.x-l,y-l,scn~tch);

Add(scratch,SUM.SUM);

return:

Figure 2.

add(A.B,C)
image A. B. C;
(

(continued)

lnt i.k.l.m.n:

m = !lize(A);
n = size(B);

If (m>n) (k = m; I "' n;)
else (k = n; = m;)

A:O NS := RAM
B:O EW :"' RAM;
C:O RAM :"" SM

c .- 0;

C := CY;

for (i=l; i<k; i++)
(

A:i NS .-
B:i EW .-
C:i RAM:=

}

ror (i=lc; kl: i++)
(

If (m<"" n)
ei!W
II' (n<= m)
el~

RAM;
RAM:
SM c .- CY:

A:(m-1) NS :"" RAM;
A:i NS :"' RAM·

B:(n-1) EW :"' RAM; .
B:i EW := RAM;

C:i
)

RAM:,SM C:,CY;

C:(l) RAM:"' SM:

move(A,x,y ,B)
image A.B:
lnt x.y;
(r• no. of inst = sitt'(A)•(~+lyl+4)

lnt i.m;

for(mdl; m<size(A); m++)
A:m EW .- RAM:
If (x:>{})

for (i,{}; kx; i++)
elw

ror (i=O; i>x: i-)

NS .- EW;

If (y:>{})
for (i=O; i<y; i++)

elw
ror (i=O: i>y; i--)

c .- M;
B:m RAM .- c·

EW .-· W:

EW .- E:

NS .- S:

NS .- N:

