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Abstract: The aim is to analyze images using shape rather than multispectral and texture infor­
mation. Image analysis is a two-stage process: segmentation and pattern recognition. Shape 
analysis requires linear features segmentation, which contains two steps: edge detection and 
line-following. Edge detection can be carried out by gradient operators. There are several tech­
niques of line-following, e.g. search near an approximate location, relaxation and dynamic pro­
gramming. We developed relaxation and dynamic programming techniques for linear feature 
extraction. Combined with several smoothing methods and edge detectors, especially the geo­
metric accuracy of line extraction is considered. A large scale aerial image is used as test data. 
The image is scanned in blue, green and red, pixelsize 80 micron. Using general knowledge abo~t 
roads, pattern recognition techniques are applied based on shape measures to extract r?~ds ~n 
urban areas. Dynamic programming is superior to relaxation. The results of road recognitIOn 1S 

qualitatively indicated. 

Introduction 

The main objective of the present paper is the 
extraction of object information from spatial digital 
imagery on the basis of shape. Two advanced segmen­
tation-by-boundary-detection techniques: edge relaxa­
tion and dynamic programming as well as their geome­
tric accuracy are specially emphasized. By spatial 
digital images we understand EM-images of the earth, 
taken from airplanes or satellites. Compared with the 
common digital images spatial digital images contain a 
tremendous number of objects, which are moreover, 
extremely complex ordered. So, the application of an 
object model, commonly applied in computer vision, is 
very difficult to realize. 

The present investigation regards road recognition 
in large scale aerial photographs, although no operati­
onal road recognition system is described. The manner 
of approach of road recognition is strongly affected by 
(Fischler et. aI, 1981): 

- The scale of the image O.e. resolution); 
- The degree of occlusion by clouds, intervening 

objects, and so on; 
- The degree of density of linear detail (i.e. urban 

versus rural scene). 
A large scale true colour aerial photograph of an urban 
area is chosen. The illumination conditions are good 
and the roads are only in a minor degree occluded by 
shadows and intervening objects. 

Information extraction about real world objects 
from images involves four steps: (1) image formation, 
(2) preprocessing, (3) analysis and (4) presentation. A 
detailed description of these stages is given in Lem­
mens (1988). Remote sensing applies mainly multispec­
tral (MS) classification as pattern recognition techni­
que, although in texture analysis earns recently interest 
too. 

Grey value and shape are the principal basic ele­
ments of image analysis (Lemmens, 1987, 1988). Com­
bination of grey values leads to colour, i.e. mUltispec­
tral (MS) information. Spatial repetition of grey values 
leads to texture. So, actually, grey value is used and 
shape hardly. This paper undertakes some cautious 
shape recognition steps. A true color aerial photo­
graph, size 23 x 23 cm and scale 1:3500, of an urban 
area is selected as testdata and drumscanned in three 
bands (blue, green and red) with pixelsize 80 micron 

and 8 bits quantization representing 256 grey values. 
MS classification only poorly discriminates man made 
objects and our test data affirms that. Although shape 
is the principal information the MS data showed to be 
a very usefull aid in both segmentation and object 
recognition. Roads were chosen because they have 
very striking and distinguishable properties. To be 
recognizable an object must have a certain minimum 
size in image space. For roads a minimum width of 6 
pixels was taken. Roads with a minimum width of 2 
meter in object space should be identi fiable. So, an 
image scale 1:3500 and a pixelsize of 80 micron is 
chosen. An urban area is selected because man made 
objects heavely challenges the capabilities of MS clas­
sification. The computations were carried out on 
128x128 and 512x512 subirnages. After the first expe­
riments the following problems could be denoted: 

- roads and buildings are spectrally hardly distin­
guishable; 

- shadows, cars and the overhanging leafs of trees 
cover roads; 
urban roads in modern quarters of town end often 
in car parks. 

The photograph is also manually digitized using an 
analytical plotter (Planicornp-C100), with a measuring 
accuracy of ..:!:. 5 mircon. The digital map is stored as a 
2-D vector format data base; (fig. 1 shows a plot) and 
used as reference. 

Before analysis can start some preprocessing is 
necessary. Radiometric restoration isn't found neces­
sary. Because a drumscanner may introduce geometric 
distortions a geometric restoration by an affine trans­
formation is carried out: 

x 

y 
with: 

ao + a lX + aZY 

bo + by< + b2Y 

(x, y): 
(X, Y): 
(ai' b j ): 

coordinates of the digital image 
reference coordinates 
i = 0, 1, 2: transformation parameters. 

Noise reduction and diminuation of texture is per­
formed, using non-linear smoothing filters. The follo­
wing filters are applied: (1) conditional average filter, 
(2) median filter and (3) ·edge preserving filter.They 
are treated in detail in section 3. Because they may 
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affect edge location, they form part of the precision 
analysis. Conditional averaging is applied in the pro­
cess of road recogni tion. Also several edge de tectors 
are considered: (1) normal gradient, (2) Prewitt opera­
tor and (3) Sobel operator. Their masks are given in 
fig. 2. The precision of edge relaxation and dynamic 
programming are compared in section 3. Road recogni­
tion is performed with edge relaxation and qualitative-
ly indicated in section 5. Smoothing and boundary de­
tection are based on the approach of (Prager, 1980). 
The above is summarized in fig. 3. 

Fig. 1 

2. Road recognition in low resolution images: a review 

Line objects, like roads, rivers and railroads, ex­
press the principal structure of an area. Since the 
time, remote sensing data became available in digital 
format, it is tried to extract 'line-like' features auto­
matically. From the functional, e.g. dictionary, 
description of a road physical and geometric properties 
can be deduced C8ajcsy and Tavakoli, 1976): 

- a road has a smooth surface, without valleys and 
holes; 

- the ground and surface of a road must be firm; 
- roads, generally, don't end in the middle of 

nowhere, but are interconnected as a network; 
- there is a limit on the steepness, width and curva­

ture of a road. 
These propert ies ha ve to be transformed to visual ones 
to achieve a road model: 

- spectral properties of a road correspond to those 
of concrete, asphalt and rock; 

- a road has a limited width, limited curvature, and 
limited steepness. 

- the length of a road must exceed a certain mini-
mum value. 

In the present invest igation condi tion 2 and 3 are 
mainly employed. Research, carried out in the past, is 
mainly limi ted to small-scale images, mostly from 
satellite sources. The developed techniques extremely 
rely on the narrowness of line objects at small scales. 
Gradient (-like) operators are used, very similar to 
edge detectors. In general, road recogni tion can be 
divided into the following broad stages: 

- application of a gradient-like operator (strip de-
tector) to segment the image; 

- elimination of small segments; 
- connection of road regions; 
- when road axes are demanded, thinning of the 

roads to one pixel thick lines. 
For small scale images the gradient-like operator may 
be considered as a strip detector. It is the basic opera­
tor. The more advanced the less problems in later 
stages. ActuaUy, later stages perform a reparation. A 
simple strip detector requires many reparations. 

Bajcsy and Tavakoli (1976) use a grey value thres­
holding on Landsat MSS Land 2, assuming that roads 
are built from concrete and rock. The method relies 
strongly on spectral information, causing multiple 
errors and therefore requiring active reparation sta­
ges. Sijmons (1987) applies a median filter. The origi­
nal image g is median filtered, leading to gm; g is 
subtracted from the original image, giving g' = g _rg . 
Actually, g' contains noise, but, because lines of o~e 
pixel thickness are smoothed by the median filter, also 
linear features are detected. A threshold is employed 
to binarize g'. 

In (Fischler et. al., 1981) the homogeneity in grey 
value along a potential road track and the contrast of 
this potential track with the adjacent terrain is measu­
red and assigned to one value. With masks the four 
principal directions (row, column and the two diago­
nals) are evaluated. The authors note some significant 
weakenesses of the operator. It is sensitive to: 

road orientation, because the operator examines 
only the four principal directions; 

- raster quantization; 
- sharp changes in road direction; 
- certain types of contrast between road and ter-

rain. 
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The basic operator of Groch (1982) evaluates the 
shape of grey value profiles at locations, where the 
presence of a line-like structure is likely. Ini tial values 
of the shape of the profile, i.e., width of the valley or 
crest and depth of the valley or height of the crest, 
dx and dgo' respectively (see fig. 4) are gi ven a priori, 
an~ depend on the kind of linear feature one wants to 
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detect. To avoid human interference also the starting 
places are determined automatically with the S(tart)­
operator. The image is covered with a coarse raster. 
Along each rasterline the basic operator evaluates the 
grey values. If a point on the profile corresponds to the 
specifications (dxo' dgo) it becomes candidate point 
and centre of two concentric circles (see fig. 5). The 
grey values in between the circles are evaluated with 
the basic operator. A candidate point is accepted when 
it forms together with accepted points in between the 
circles a collinearity. The direction of the line is used 
as ini tial direction of the road. 

Fischler et. al. (1981) apply a dynamic program­
ming to link the road elements. The dynamic pro­
gramming approach is very similar to our boundary 
detection approach. 

Groch (1982) integrates entirely the process of 
search and connection. Starting from the initial road 
element, profiles across the lengthening of the initial 
direction are evaluated. The best point is chosen, the 
road is enlarged, a new local direction is computed and 
so on. When no point on the profile is accepted the 
operator goes back. When, after a repeated back step­
ping, still no road element is found, the area in the 
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Fig. 3 

To link separated road segments (Bajcsy and 
Tavakoli, 1976) use a 'road grower', which connects 
neighbouring road regions which have minimal diffe­
rence between their directionalities ('directional pro­
ximity'). Because there will still remain gaps between 
roads, the next step is to connect those road segments 
that minimize the distance between disconnected pie­
ces of road, regardless of directionality ('distance 
proximity'). 

lengthening of the local direction is covered by a rec­
tangle of fine-drawn parallel profiles enabling an ana­
lysis in great detail to bridge gaps. This operator is 
actually a road connector. The approach has great 
flexibility with regard to changing circumst ances, like 
width and grey value of the line feature. Its great 
advantage is that no information is prematurely drop­
ped. 

Sijmons (1987), eliminates road segments smaller 
than four pixels. Disconnected road elements are con­
nected by evaluation of the topological structure in 3 x 
3 windows of the binary image. The drawback of the 
approaches of Bajcsy and Tavakoli (1976) and Sijmons 
(1987) is that the road elements are linked in the bi­
nary image. Both edge strength and edge direction are 
dropped in a early stage and just topology is used. An 
additional limitation of the operator g' = g - gm is 
the one pixel thickness condition of road elements 
introducing a strong dependency on scale and feature 
type. 
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I 

'dg 
d I ° __ --/ ___ :0 ____ .: 

Fig. 4 

x 



Fig. 5 

3 .. Non-linear smoothing 

Previous to segmentation, the image is enhanced by 
smoothing to reduce noise and texture. Smoothing is 
low-pass filtering and its most simple appearance is a 
3 x 3 averaging. The mask of this, often called, box 
filter is shown in table 1 a 
The grey values may be weighted, often the Gaussian 
is used For a 3 x 3 neighbourhood its mask is gi ven in 
table lb. Gaussian filters can be derived by repeated 
convolution of 2 x 2 box filters. These filters are line­
ar, thus they smooth also edges. Non-linear filtering 
avoids edge flattening. We consider: (1) condi tional 
average filter, (2) median filter and (3) edge-preser­
ving smoothing filter. They didn't show significant 
differences with regard to precision. For road recogni­
tion conditional averaging is chosen because of its 
computational efficiency. Edge-preserving smoothing 
is especially developed to prevent edges for smoothing. 
It has also the capability to reduce texture considerab­
ly. The method, however, is computationally expen­
sive. 

1 U 1 ] 1 U 2 I] 1 D i] ~ -L 0 D - III 16 242 = 9 1 1 1 1 2 1 4 4 1 1 

3x3 unweighted 3)(3 G[Jusnian filter bui It from convolution of 
average filter two 2x2 unweighled overaging fillers 

a b 

Table 1 

Conditional average filter. The new grey value of each 
pixel is the unweighted average of the grey value of 
the window. But if the difference between the pixel 
and a neighbouring pixel exceeds a threshold T the 
neighbouring pixel is excluded. The grey value G of 
pixel P Q' with neighbourhood pixels Pi' i = 1, .. ,n ~see 
fig. 6. tor a 3 x 3 neighbourhood), having grey values 

14 P3 P2 3 2 1 

Ps IO PI 4 0 

Ps P7 Pg 5 6 7 

a b 

Fig. 6 

Gp becomes after filtering: 

G 1 l: G. 
0 n G. E S I 

1 

where: 

S { G j I G j - G I < T}i 0, .• ,n 0 

The filter has the following effects: 
- Small amounts of noise (noise < T) are smoothed in 

homogeneous regions. 
- When G lies on a boundary and the grey values at 

both siJes differ more than T, the boundary isn't 
blurred. So, the filter preserves edges with a gra­
dient larger than T. 

- If the edge has a very slowly ascending across 
profile, i.e there are several gradient pixels, the 
filter averages roughly as many pixels above as 
beneath the actual pixel value. So, the noise is 
reduced but the gradient is rnaintained. 

- Texture elernents, which differ little in grey va­
lue, are eliminated. 

- Spike or irnpulse noise doesn't affect the result of 
averaging. 

- Spike noise itself isn't eliminated, when it occurs 
Go should be replaced by the average of the 
neighbourhood: 

G o 
1 
n 

n 
l: G. 

i=l I 

Median filters assign to each pixel the median grey 
value of the window. In practice often a 3 x 3 window 
is chosen, since the filter requires a time-consuming 
sorting procedure. The median filter is thoroughly used 
as non-linear smoothing filter. Its proporties are theo­
retical well understood (Gallagher and Wise, 1981). The 
filter reduces noise, without affecting edges. But, lines 
of one pixel thickness vanish, because, e.g., in a 3 x 3 
window, a line contains only 3 pixels and they will 
loose competition with the other 6. On this property 
the application as linear feature extraction technique 
in (Sijmons, 1987) is founded. 

Edge preserving smoothing searches the most homoge­
neous neighbourhood of each pixel and assigns to it the 
average grey value of that neighbourhood. The homo­
geneity is expressed in terms of variance. When the 
pixel under consideration lies on an edge there will be, 
when moving away, directions where the variance is 
low, i.e., the pixel belongs to that region, and directi­
ons with high variances. The principal notion is to 
rotate with an interval of f',¢ (e.g. 45 0 ), an elongated 
mask around the pixel and to compute the variance of 
the grey values in the bar. The average of the grey 
v~lues. 9¢ (i, j ) of the bar with the smallest variance 

o min' 

J. =min (0
2 (i, j); mIn g¢ 

¢ = r el1¢ ; r = 1,. oR; R.l1¢ 

is assigned to the pixel. 

2 (0") 1 l: l: (CO k 1) - ( »2 
o g¢ 1,] = n-l kEY 18N g 1+ ,j+ - g¢ i,j 



where n is the number of pixels in the bar and V and W 
depend on ¢ and the size of the neighbourhood. A theo­
reti.cally plain implementation results in a pixel cut off 
by the bar. i.e. each grey value should be weighted by 
the pixel area belonging to the bar. However, this is 
computationally costly. We have implemented a com­
putationally less hostile method, although still rather 
time consuming, by considering only entire pixels and 
evaluating only four directions: ¢ ::: 450

, 1350
, 2250 

and 3150 in a 5 x 5 neighbourhood. Since ¢ is referen­
ced to the vertical axis of the grid, the resulting bars 
correspond to the 3 x 3 right-upper, right-under, left­
under and left-upper quadrant respectively (see fig. 7). 
V and W become now: 

¢ ::: 450 ¢ ::: 1350 ¢ ::: 2250 ¢ ::: 3150 

V I 0, -21 I 0, -2 I 1-2, 0 I 1-2, 0 I 

W 1-2, 0 I 1 0, -2 I 1 0, -2 I I -2,0 I 

4. Segmentation 

The image is segmented by boundary detection. A 
boundary separates two regions which differ in grey 
value or texture. Edges are the· individual features 
forming the boundary. They are detected by gradient 
operators (high-pass filtering). Commonly 3 x 3 masks 
are applied. The common edge detectors trace abrupt 
changes in grey values, but no changes in texture. 
Texture is a repeated spatial structure in grey value 
and causes problems to gradient operators. With com­
bined texture measures and gradient operators, texture 
boundaries can be detected. But texture measures are 
time consuming. Therefore texture is reduced by 
smoothing. Examples of edge detectors are shown in 
fig. 2. The strength or magnitude M of the gradient 

2 2 1 M ::: (g + g )2 
X Y 

indicates the probability of a pixel to lie on a bounda­
ry. The local direction of the boundary is computed 
from: 

¢ ::: a tan (gyigx) + !n. 

Besides edge detection, boundary detection invol­
ves also line- or border-following, i.e. connection of 
edges. The most rigorous way to determine whether a 
pixel belongs to an edge or not, is thresholding the 
edge magnitude. All pixels with a magnitude above the 
threshold are edges, all others are not. So, thresholding 
is a little differentiated method of binarisation. More 
refined techniques use neighbourhood information. 
They are based on probabilistic relaxation or on mini­
mal cost patch search (graph search) combined with 
dynamic programming. It should be noted that graph 
search combines actually edge determination and line­
following, although an initial low threshold is set to 
limit search space. 

Several line-following techniques exists. They are 
reviewed in Rosenfeld & Kak, (1982 vol. 2, pp. 219-
228.) Often lines are represented by a chain-code. A 
discrete arc can be defined by the coordinates of a 
starting point and a sequence of moves around the arc. 
In moving from the one pixel to the other on a 
rectangular tessellation only 8 directions are possible. 

They are coded from 0 to 7. The chaincode or Freeman 
code, originally developed for the guidance of 
computer controlled plotting, is commonly applied and 
shown in fig. 6°. After coding each series of edges is 
represented by a starting point and a sequence of 
codes, each code refering to the direction of an edge 
with respect to the foregoing edge in the sequence. 

Fig. 7 

Relaxation and dynamic programming are often 
applied in digital image processing. P..elaxation has 
found its way in the detection of corresponding points 
in image sequences by feature matching. A classical 
paper is (Barnard and Thompson, 19fJl). Dynamic 
programming has been recently incorporated in 
photogrammetric stereo matching, using epipolar 
geometry, by (Bernard et. ale 1986). Edge relaxation 
and graph search are further elaborated in the sequel. 

4.1 Edge relaxation 
Edge relaxation utilizes neighbouring edges to weaken 
or to strengthen the probability that the edge belongs 
to a boundary. The method is greatly facilitated by 
constraining edges to lie between pixels (see fig. 8), 
causing boundaries to be covered entirely by horizontal 
and vertical edges (Prager, 1980). The simplest mask 
leading to horizontal and vertical edges between pixels 
is the normal gradient (see for mask, fig. 2) 
Experiments show that this simple mask gives the best 
overall results (Prager, 1980). The normal gradient will 
cause that wide edges will give multiple parallel 
indications of the same edge. In a sequence of parallel 
adjacent edges all but the strongest edges are 
eliminated by a non-maximum suppression. Next the 
total grey value difference between the shoulder and 
the toe of the gradient is assigned to the remaining 
edge, to achieve a more representative edge strength. 
Note that this approach corresponds to the 
hierarchical organization assumption of Marr (1982) 
which states that the spatial organisation of a 
surface's reflectance function is often generated by a 
number of different processes, each operating at a 
different scale. 
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8 The normal gradient detects horizontal and 
vertical edges. The edges are located between the 
pixels 



Contrary to dynamic programming, relaxation is a 
stochastic approach. For a general discussion refer to 
(Rosenfeld and Kak, 1982, vol. 2, p. 154). To describe 
the boundary detection algorithm the representation of 
Prager (1980) summarized in fig. 9 is followed using a 
modified notation. 

- The edge under consideration is represented by an 
open rectangle and denoted by r; 

- A neighbouring edge position with the presents of 
an edge is shown as a black rectangle; 

- A neighbouring edge position with no edge present 
is represented by a dotted line; 

- A neighbouring edge position with an uncertain 
edge is represented by a solid line. 

Edge position r is flanked at each side by 3 edge posi­
tions. They are indicated at the left side by L1, L2 and 
L3 and at the right side by R1, R2 and R3 (see fig. 10). 
In the sequel just the left side is considered. 

--Fig. 9 

Each Li , i = 1, 2, 3 may be either an edge or not. 
So, 0, 1, 2 or 3 edge positions ar~possible edges, lea­
ding to four vertex types q., j = 0, •• , 3 (see Fig. 11). 
The edge strength expresse~ the probability of an edge 
position to be an edge: per), P(L j ) and peRi)' i = 1, 2, 3. 
Depending on P(L i) and peRi) -vertex type- per) is re­
adjusted. Without loss of generality, P(L i ) is reordered 
to a descending sequence: 

r 

Fig.l0 

Assuming mutual independency of the edges, the pro­
babilities P(qj) of the four vertex types qj' j = 1, •• ,4, 
follows from probability theory: 

,P(qo) 

P(ql) 

P(q2) 

P(q3) 

= (1 - P1)(1 - P2)(1 - P3) 

PI (l - P 2)(1 - P3) 

P1P2(1 - P 3) 

P1P2P3 

The vertex type q. with the largest probability P(qi) = 
max (P(qO)' P(ql)' P(q2)' P(q4» is chosen as the actual 
vertex configuration. There are some refinements 
necessary. Implementation without more ado, causes 
that when PI' P2 and P3 are all small, but PI relative­
ly large with respect to P2 and P3' a ql configuration 
may stay undetected. Therefore the non-edge probabi­
lities are not related to 1 but to PO' with Po = max(P1, 
P2' P 3), giving: 

P(qo) 

P(ql) 

P(q2) 

P(q3) 

(Po - P1)(PO - P2)(PO - P3) 

PI (PO - P2)(PO - P3) 

P1PZ(Po - P3) 

= P1P2P3 

However, in this wayan actual qo vertex type can be 
recognized as ql' since P l may be large only with 
respect to P2 and P3' but not in absolute sense. So, PO' 
has to exceed a certain threshold P min' leading to the 
final definition: Po = max(P1,PZ'P3,f-' .rnj(l). (In the cur­
rent implementation P min is set to U.l). At each end 
of r, 4 vertex types qj means at both ends 16 vertex 
types. Because of symmetry only 10 vertex types have 
to be considered. Examples of vertex types are 
sketched in fig. 12. For instance, vertex type qo - qo 
designates an edge position without neighbouring 
edges. So, r is probably due to noise and per) has to be 
decreased. Vertex type qo - q1 may indicate that r 
marks the beginning or the end of a line, but this is not 
sure since r may be also the result of noise So, Per) is 
neither augmented nor decreased. Vertex type q1 - ql 
shows that it is most likely that r is part of a line; P(r) 
has to be increased. Each vertex type can be evaluated 
in this way. The result is shown in fig. 13 and table 2. 
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The probability in iteration step k+l is readjusted 
according to: 

-: 

0: 

+: 

pk+.l(r) =·rnax CO, pk(r) - c) 

pk+1Cr) = pk(r) 

pk+1Cr) = min(l, pkCr) + c) 

where c is a constant; 0.2 in the current implementa­
tion. A large c gives fast convergence, i.e. a small 
neighbourhood is involved. A small c causes the oppo­
site. 

• I 

• I 
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Fig. 12 Vertex types in edge relaxation 



The above can be summarized in the following algo­
rithm: 

1 Search candidate edges by grey value thresholding 
and assign to them an initial probability pO(r) 
proportional to the strength of the gradient; 

2 For k=1 to a steady situation (thus each candidate 
edge has either reached probability 0 or 1): 

3 Determine the vertex type; 
4 Readjust P (r) on the ground of the vertex 

type. 

The relaxation procedure drives the edge probabili­
ty to 0 or 1. Next the edges with a high probability are 
connected by binary line-following using 4 
connectedness, (i.e., each pixel has 4 neighbours). 

Vertex type 

qo -
ql 

qz 

q3 

- : per) is decreased; 

o : PCr) unchanged; 

+ : per) is augmented. 

, 
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F.i~. 13 Effect of the vertex type on the edge propa­
billty (- negative, 0 don't care, + positive) 

4.2 Graph searching with dynamic programming 
A graph consists of a set of nodes and arcs between 
nodes. An edge detector results in the magnitude 
image Mj and the direction image <Pi' where <Pi may be 
interpreted as nodes in a graph, each with costs M·. 
Which path is the optimum one, i.e. associated with 
the least costs? 

Dynamic programming is a computational techni­
que for solving optimization problems in a sequential 
way. It is originated in optimizing route planning. 
There are several paths (policies) to go from A to N 
(see fig. 14). With each path costs are associated. The 
purpose is to find the path with the minimum of total 
costs. It isn't necessary to evaluate all possible paths 
between A and N (fig. 14) sequentially, because the 
theorem of optimality may be applied which states 
that an optimal policy must contain only optimal sub­
policies. 

To evaluate the paths an evaluation or costs func­
tion is necessary. Mi and <Pi are plausible ~ararneters 
to build the cost function, arranged as a weIghted SUm 
of high cumulative Mi and low cumulative!;, <Pi = I ¢ i+l 
_ <p.I. For an arc of length n between the stages sand 
t, the cost function Cst becomes: 

C = st 

with a a negative factor between -1 and 0, weighting 
the influence of the curvature relative against the 
edge strength. Applying the theorem of optimal~ty, the 
cost function can be optimized in stages to find the 
optimal path fit: 

f? 0 
1 

f~ rmx (C 01+ f? 
I 1 

f~ rmx (Cst + f~ 
1 I 

3 4 

Fig. 14 Several paths to go from A to N, each associ­
ated with a cost. Wi th dynamic programming the 
optimum path can be detected. 

A more comprehensive discussion can be found in 
(8allard and Grown, 1982). To dirninish the search 
space dirnension Mi 1S thresholded: IV'll> T mO Pixels 
become part of the graph, along whiCh the optimal 
paths are searched, when they fulfil the following 
conditions: 

with e j" the direction of pixel i to pixel j; T m' T and 
T e thr~sholds. The general structure of the algotithrn 
is given by: 

1 Until the search space is empty, search max (lv1 j ) 

the starting goints of a new boundary. 
2 Set T = 90 and T e = 900

, corresponding with 5 
direc~ions in 8-connective neighbourhood, and 
build the graph for n elements, with n= 4; 

3 Compute the most optimal path in the one direc­
tion and remove the evaluated path from the 
search space; 

4 Compute the most optimal path in the other di­
rection and remove the evaluated path from the 
search space; 

5 Go to 1. 



The results of edge relaxation and dynamic pro­
gramming on a 128 x 128 test image are shown in fig. 
15 and fig. 16, respectively. 

Fig .. 15 128x128 test image after edge relaxation. 

Fig. 1~ 128x128 te~t image after graph searching using 
dynamIc programming. 

5. Road recognition 

Road recognition is performed using shape. Recog­
nition by shape requires an object model. This is easy 
to realize in the branch of computer vision, called 
robot vision, because the product uniquely defines the 
model. But at the surface of the earth there is nearly 
an infinity of shapes. This complexity has strongly 
obstructed application of shape recognition. 

The results of segrnentation are elementary 
regions, for which now basic properties can be com­
puted, e.g.: 

1: average grey level in the individual spectral 
bands; 

2: area size (A); 
3: perimeter (P); 
4: length (L); 
5: width (W); 
6: centre of gravity. 

(2) - (5) define shape and orientation of the region. 

5.1 Region descriptors 

Some shape descriptors are: 

Elongatedness E1 = A ; vi E2 = L ; W 

Non cornpartness value C: C = p2; A 

In the present investigation E2 in combination with 
an eigen value analysis is used. The set of n pixels 
belonging to a region, may be considererd as a scatter 
diagram of 2 variables, each observed n times. The 
variables are the (x, y) co-ordinates. Suppose that C is 
the covariance matrix: 

C [ ~xx xy 

C xy 
C yy 

with variances: 

C xx 
1 
n 

n 
( -)2 I x. -x ; 

i=l 1 

and covariance: 

C xy 
1 n 

I ex. - x)(y. - y) 
n i=l I 1 

with x and y the coordinates of the centre of gravity 
(i.e., mean): 

-x -y 
1 n 

I y .• 
n i=p I 

By an eigen value transformation the eigen space 
can be computed. The eigen values Al and A2 define 
the 1st and 2nd principal axes, which correspond to the 
long and short axes of the error ellips, i.e. the shape of 
the distribution. The eigen value is computed from: 

C - A C xx xy 
o 

C C - A xy yy 

Al and A2 define the shape, not the real dimensions. So 
it isn't necessary to compute them from the above 
quadratic form since a measure of the flattening fjJf 
the ellipsoid, i.e. eiongatedness, is, e.g.: E = ( Al / \2) 2" • 



The flattening can also be given in a roundness 
measure R: 

R = 1 - "'2 ]2 = 
+ "'2 

o ~ R ~ 1. When R is 1 the shape of the region is a 
circle. When R reached 0, the shape is very elongated. 

l:3ecause: '" 1 '" 2 = c c - C
2 

xx yy xy 

and "'2 = C + C xx yy 

R _ 4 det C 
- (tr C)2 

So, it isn't necessary to compute", 1 and "'2 expliciteiy. 
Because one wants often absolute measures for length 
and width it is appropriate to know E = (A 11 "'2) 2" 
since, once the length is computed the width can be 
derived from the shape. E can be derived from R, 
using: 

E = A Z_11 _+ _'\/--;(=l=-==R):;-; 
. \j- rJO - R) 

The derivation can be found in appendix I. The 
direction ¢ of the 1st principal axis is given by: 

¢ = ! atan 

5.2 Region junction 

2C xy 
C - C xx yy 

Edge relaxation is carried out on all three bands. The 
resulting edge image is the sum of the three bands. 
This may cause that regions become rather small, 
since weak edges, which exceed only in one band the 
threshold, lead also to boundaries. The mean spectral 
properties of adjacent regions are compared and the 
regions are joined if the maximum of the differences 
of three bands k. 

k k = max (I B j - B j I ) 

doesn't exceed a threshold Tb, i.e. max( f1 b~ .) < T bo 
In the present investigation T b is set to 20. The spec­
tral response of the new region 

9~ = B~ V B~ 
1 1 J 

is comPl!ted from a weighted average: 

k k 
n. B. + n. B. 

1 1 I I B~ = 
1 + n. 

J 

with ni and nj the number of pixels of region i and j 
respectively. There are small regions with spectral 
characteristics which differ entirely from all adjacent 
regions. When it is enclosed by only one region it is 
prefered to remove this 
enclave. If they are less than 20 pixels they become 
the spectral properties of their enclosing region. 

5.3 I-{oad detection 
Now we arrive at the point that the elementary re­
gions have to be classified into road regions and back­
ground regions on ground of their shape. Due to inter­
vening objects segmentation divides a road into several 
elongated regions. When a region satisfies a couple of 
conditions it is promoted to candidate road region. 
These condi tions are: 

- The width w should be larger than 2m, but smaller 
than 12m, e.g. 2 < w < 12m, or, in pixel format, 6 
< W < 40 pixels. 

- The elongatedness l/w, with l the length of the 
region and w the width, should exceed 3; e.g. 
l/w > 3. 

To each region i, which fulfils the above conditions, a 
probability Pi is assigned: Pi = 2l/N. N is a 
normalization factor roughly corresponding to the 
linear image size, in the present investigation N = 500. 
The candidate regions form the starting points for 
further search, in which the following road properties 
are involved: 

- roads form an interconnected network, e.g. roads 
don't suddenly end; 

- the surface of a road is made of asphalt, e.g. all 
road segments have the same spectral properties 

- the local curvature has an upper bound. 

The above properties are translated into the following 
geometric and spectral condi tions: 

1 The shortest distance f1ljj bridging the gap be­
tween two candidate regiorls i and j is: 

f1 lij = min(T d' ! (li + lj)' 

In the current computations T d is chosen such that 
the distance never exceeds 25m, sufficient to 
bridge small intervening objects, i.e. T d = 80 pi­
xels. 

2 The directions ¢ i and ¢ i of the 1st principal axes 
coincide with each other' 

f1¢ = I ¢. - ¢. I < T ~ 
1 J 't' 

In the current computations T ¢ is set to 0.3 rad. 
3 The differences of the average grey values in the 

three spectral bands don't exceed a threshold: 

f1 f3~ . 
1 J 

k k k I f3 i - f3 j I < T 1:3 

where k refers to th~ spectral bands. In the 
current computations TI:) was set to 20. 

Each time regions fulfil one of the above conditions 
their probability is augmented by: 

Pi = 2l/N. 

Note that lj refers to the neighbour region. Condi tion 
1 fulfils ths neighbourhood relationship. Only neigh­
bouring regions which fulfil this condition, are 
examined. The probability of straight neigbouring road 
parts is augmented both by condition 2 and 3. The 
probability of neighbouring road segments in curves is 
augmented by condition 3. 

Once all regions are examined, a simple threshold 
is applied on the probabilities to define roads and 
background. The gaps between the road segments are 
filled by a directional dilation, i.e. the road segments 
are expanded in the direction of the first principal 
axis. The above road recognition procedure has shown 
good results. 
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6. Geometric accuracy analysis 

The precision of the two boundary detection 
methods in combination with the smoothing filters and 
edge detectors are examined with respect to an ac­
curate reference map. The reference lines are shown 
in fig. 17. A visual impression of the quality of edge 
relaxation and dynamic programming is given in fig. 18 
and fig. 19, respectively. The results are satisfying. 
For quantitative description three measures are 
developed. 

6.1 Precision measures 
Three precision measures will be considered. For the 
present investigation just measure 3 showed to be 
appropriate. 

Measure 1. The most appropriate measure is based 
on the comparison of vectors since in vector format 
the spatial information will be stored. Vectorization, 
i.e. raster-vector conversion, is a problem apart. We 
apply the following vectorization process: a straight 
sequence of edges is adjusted by a straight (regression) 
line, i.e. the parameters (a, b) of the line equation x = 
ay + b, are computed by least squares. Crossing lines 
are designated manua!Jy qnd their intersection is com­
puted. Suppose that (Xl, yl) are the. planar co-ordinates 
of the image vertices and (x 1, Y 1 ) the coordinates 
of the corresponding map vect~rs, 2han measure 1 (m 1) 
is given by: 

1 n ~. . 2 . yi)2 I m. = - L (Xl _ xl) + </ -
1 n i =1 0 0 

with n the number vertices in the image. Due to small 
number of number of vertices this measure isn't 
sui table for the the present invest igation. 

Measure 2 is inspired by computer graphics, where 
one is faced with vector-raster conversion for display 
purposes. The notion is to overlay the line image with 

Fig. 17 Chosen reference lines in the 128x128 test 
image for geometric precision analysis of edge 
relaxation and dynamic programming. 

the reference map converted to raster. The similarity 
of pixels is a rneasure for the precision, i.e. 

n 
100 % L 

n i=1 

with t-d the pixels of the reference line and L i those 
of the image line, both in binary format, i.e. the line 
pixels have value 1 and the background pixels o. The 
lack is that small deviations in line position leads to 
bad m2' 

Fig. IB Location of the edge relaxation lines relatively 
to the reference lines. 

Fig. 19 Location of the dynamic programming lines 
relatively to the reference lines. 
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tvleasure 3 computes the mean perpendicular dis­
tapce. of the edges to the reference line. Suppose that 
(Xl, yl) is the position of. an edge and diL the perpendi­
cular distance of (Xl, yl) to the reference line, m3 is 
now defined by: 

1 
n 

n 
L 

i=l 
d.L 

1 

with n the number of pixels part of the line. 

6.2 Results 
Nor the kind of smoothing filter nor the kind of edge 
detection affect the precision significantly. This 
invariance is probably caused by the excellent image 
quality. Computational efficiency requires the least 
time consuming conditional averaging and normal 
gradient. Table 3 shows the precision for edge relaxa­
Hon and dynamic programming ordered per line. In 
case of edge relaxation the listed figures, refer to the 
same smoothing filter and edge detector as is applied 
for road recognition, i.e. conditional average filter and 
normal gradient. In case of dynamic programming the 
figures refer to the conditional average filter and the 
Prewitt operator. As explained, measure 1 is skipped. 
Because measure 2 isn't very reliable only from mea­
sure 3 conclusions are drawn. Our limited test set 
shows that dynamic programming gives better results. 
Only for line 4 and 9 edge relaxation appears to be 
superior. 

measure 2 
(deviation in %) 

line edgerel. dyne prog. 

1 89 53 
2 29 23 
3 10 84 
4 17 16 
5 7 65 
6 22 24 
7 11 39 
8 20 25 
9 25 59 

7 Conclusions 

Two techniques to segment digital aerial images by 
boundary detection are presented. Road recognition is 
performed, using shape. The segmentation methods are 
based on probabilistic relaxation and dynamic pro­
gramming. Special emphasis is placed on geometric 
accuracy. Separate road regions are linked using adja­
cency and spectral conditions. Through roads are de­
tected with good results. Intervening features, like 
cars and shadows, cause rather frayed road borders. 
They should be detected too. Shadows are hard to iden­
tify because they don't have unique spectral characte­
ristics, e.g., houses throw darker ,shadows then trees. 
Adding the infrared band will augment the shadow 
information. \: 

Object recognition can further be improved by a 
probabilistic relaxation scheme. At present, a simple 
threshold on the probability is employed. However, 
using neighbouring regions, the probability of each 
region can be readjusted iteratively. Multispectral 
information isn't used in absolute sense, i.e., 

, multispectral classification, but only relatively, i.e. to 

trace whether two or rnore regions are part of the 
same road. However, multispectral classification is 
able to determine a priori the non-road regions, which 
reduces considerably search space. Incorporation of a 
spatial database, e.g. a digital map or Geographic 
Information System (GIS), gives benefit. An outline for 
interfacing imagery with GIS data is expounded in 
(Lernmens, 1987; 1988). 

Our testdata point out that dynamic programming 
is preferable to edge relaxation. Dynamic program­
ming is computationally less expensive and brings out a 
better visual representation. Their geometric accuracy 
is investigated using sharp lines. Dynamic program­
ming shows a better accuracy. The weights of the edge 
direction in the dynamic costs function isn't signifi­
cant. So, the edge directions may be ignored. This is, 
probably, effected by the high image quality, which 
may also cause the little difference in effect of the 
smoothing filters and edge detectors. The mean per­
pendicular distance (measure 3) is appropriate. Vertex 
comparison (measure 1) should be an adequate mea­
sure, too, but, the few well defined vertices in the pre­
sent investigation forced us to omit it. A shift or rota­
tion leads to a small similarity measure for measure 2, 
so, it isn't sui table. 

Analysis is carried out on the original spatial reso­
lution level, i.e., the pixel size remains unchanged. 
Multiresolution arproaches have proved to be very use­
ful in many digital image processing applications and 
corresponds to the theory of human vision (co f", Marr 
and Hildreth, 1980; Marr, 1979). The human visual sys-

measure 3 
(deviation in pixels) 

edgerel. dyne prog. 

0.80 0.64 
0.65 0.45 
0.55 0.51 
0.36 0.46 
0.39 0.32 
0.42 0.37 
0.46 0.39 
0.50 0.42 
0.47 0.54 

Table 3 

tem first takes a general view, next the scene part of 
interest is examined closely. It fitl:? also the good geo­
detic sense to work from the large to the small. The 
present paper doesn't describe an operational road re­
cognition system. It is shown that objects can be 
recognized using shape information deduced from 
general knowledge about the scene. 
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Appendix I 

Derivation of E from R: 

R is a roundness measure of the error ellips, defined by 

Al - 1.2]2 R = 1 -
AJ. + 1.2 

(I.l) 

with A 1 the largest and 1.2 the smallest eigen value. E 
is an eiongatedness measure: 

or: Al 

Inserting 0.2) in (I.l) yields: 

_A_2_E--:2::--__ A _2_ J 2 
A E 2 + A 

2 2 

= 1 _ [_E-:2:.--_-_1._1_ 
E2 + Al r 

From 0.3) it follows: 

or: 

E 

1 

1 + (1 - R) ! 
1 

1 - (1 - R) 2: 

1 
2: 

0.2) 

(1.3) 

0.4) 

(1.5) 


