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ABSTRACT: 
 
This paper introduced a new automatic terrain extraction (ATE) module inside ERDAS’s photogrammetric software LPS. This 
method uses a global DEM to initialize a surface model and iteratively refines it with image registration on different pyramid levels. 
Search range used in image registration is adaptively controlled by elevation range of matched feature points. However, mismatches 
and elevation blunders may cause search range to be out-of-scope and fail ATE process. We used three blunder elimination 
techniques to ensure the convergence of search range: positional cross-correlation, PCA-based blunder elimination, and object 
filtering. The method is tested with images from various sensors including frame cameras, satellites, and Leica’s ADS40.  
 
 

1. INTRODUCTION  

1.1 Overview 

Automatic terrain extraction (ATE) is used to extract digital 
surface model (DSM) from triangulated stereo images (Zhang, 
2006; Zebedin, 2006). DSM can be either vector or raster 
format. Its density ranges from 1/3 to 1/10 of density of original 
image pixels, e.g., 10-meter resolution for satellite sensors such 
as Quickbird, 1-meter resolution for ADS40 imagery, etc. DSM 
can be used to generate digital terrain model (DTM), contour 
map, 3D building model, orthophoto, and true-ortho. 
 
As lidar technology becomes popular and affordable, ATE 
begins to lose market on airborne platform. Lidar is superior in 
providing DSM faster, denser, more accurate (Hodgson, 2004; 
Ma, 2005): centimetre-level vertical accuracy from lidar vs. 
meter-level accuracy from ATE, 1~7 points per meter2 from 
lidar vs. 1 point per meter2 from ATE, 2-hours of filtering for a 
1000-mile2 by lidar vs. much longer time in matching, filtering, 
and manual post-editing by ATE. However, lidar alone cannot 
provide orthophotos. To generate quality orthophotos, images 
from other platform will need to go through automatic point 
measurement and triangulation before being integrated with 
lidar point cloud, and this adds to the cost and complexity of 
map generation, so ATE is still active in low-resolution and 
low-cost map generation. Furthermore, lidar can not generate 
dense and accurate enough points on satellite platform, which 
still relies on ATE for map generation.  
 
The future of ATE is still ambiguous right now: it may fade out 
in next 5~10 years, or it will further develop in new directions, 
such as: 1) points from ATE (high horizontal accuracy) and 
lidar (high vertical accuracy) may be triangulated together to 
achieve centimetre level accuracy in both horizontal and 
vertical direction; 2) feature-extraction-based ATE and lidar 
point cloud may be integrated to provide buildings structures 
and true-orthos at real-time;   

3) ATE may become more popular in map resynchronization 
and vector-to-raster registration for updating road map or 
detecting changes, etc. 
 
In order to compete against lidar in both point density and 
accuracy, ERDAS’s next generation ATE moves toward pixel-
by-pixel and feature-based matching. Adaptive ATE is an 
intermediate step towards this goal. 
 
1.2 Adaptive ATE 

In ERDAS’s traditional ATE, customer needs to set up search 
range for image registration manually by identifying terrain 
types such as high-mountain or rolling hills and then selecting 
corresponding strategies. To use a wider search range on 
mountains and a smaller one on hills within the same image pair, 
customer needs to manually digitize area-of-interest (AOI) for 
mountain regions and hill regions separately and assign 
different strategies to them. ATE will go from high-pyramid 
levels to low pyramid levels, at each level the search range used 
stays the same on image space but is actually reduced to half on 
object space, which means search range goes smaller and 
smaller by brute-force. This method is proven to be a reliable 
solution, but it requires much human operation and is slow on 
production line. 
 
The performance of traditional ATE relies on customer-defined 
search ranges. To free customer from such kind of overhead, we 
developed an adaptive ATE module to define search range by 
terrain variation. The basic idea is: at the beginning of a 
matching circle, highest and lowest points (from terrain range) 
along an image ray from first image are projected to second 
image as starting and ending points, which defines a search 
range; and then, features are matched along epipolar-line within 
this range; finally, elevation range of matched points are used to 
update terrain range, ending this matching circle. Matching 
starts from a high image pyramid and terrain range is initialized 
with a global DEM generated with 3-second SRTM DEM 
(Slater, 2006); at each pyramid level, terrain range updated 
from matches on higher pyramid is used to limit search range at 
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current pyramid, and matching results from current pyramid 
will be used to update terrain range at next lower pyramid. By 
this way, the ambiguity of terrain variation is reduced at each 
pyramid level and search range should be reduced as well and 
converge to a small value, which is a function of terrain slope, 
accuracy, and pixel size. 
 
If there are no mismatches and blunders, both terrain variation 
and search range will converge through iterations. However, 
mismatch is inevitable in stereo image registration and blunder 
does exist, so search range won’t reduce effectively and may 
ends up too big at low pyramid levels. That is why blunder 
elimination turns to be a very important part of adaptive ATE. 
We developed three blunder elimination techniques: positional 
cross-correlation, PCA-based blunder elimination, and object 
filtering. The first two are applied at the end of matching at 
each pyramid level to suppress mismatches, and object filtering 
is used at final pyramid to eliminate spikes, buildings, and trees 
to produce bare-earth. 
 
 

2.  BLUNDER ELIMINATION TECHNIQUES 

2.1 Positional Cross-Correlation 

Positional cross-correlation (PCC) measures the consistency of 
relative point locations between two sets of points on image 
space. It is calculated using the following equations: 
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where,  px is PCC of x coordinates 
 py is PCC of y coordinates 
 (x1, y1) are image coordinates from set 1 
 (x2, y2) are image coordinates from set 2 
 E() is an operation to calculate mean value 
 
Fig. 1 shows an example: left shows points without blunders 
where PCC is high (1.00, 0.96); right shows points with 
blunders where PCCy is low (0.85). A low PCC normally 
indicates mismatches, which can be identified by iteratively 
eliminating the most-inconsistent pair and re-calculating PCC 
until PCC is big enough.  
 
This method works for terrain with slopes and also adapts well 
to various natural terrain such as mountains, hills, and flat 
planes. It can normally remove 30% of matches as blunders and 
make terrain estimation reliable for matching at next pyramid 
level. However, this method alone is not suitable for 
metropolitan area where high-rising buildings cause too much 
discontinuity. 
 
The threshold for PCC is currently practised with empirical 
values. This method can eliminate approximate 5% of matched 
points that are normally big mismatches. 
 

coef: (1.00, 0.96) coef: (1.00, 0.85)

 
 
Figure 1.  Positional correlation coefficients without blunders 

(left, vertex linked by solid lines) and with blunders 
(right, points linked only by dashed lines). Points are 
triangulated in objected space and linked in image 
space to show the displacement 

 
2.2 PCA-based Blunder Elimination 

This method is based on piecewise smoothness constraint on 
object space. Point cloud in neighbourhood is fitted to a 
principal plane using PCA decomposition (Rao, 1972) and 
points with big distance to this plane are eliminated. Distance 
threshold is dynamically changed with variation of distances. 
Fig. 2 shows an example. 
 
 

 
 
Figure 2. Principal plane, blunder points (in red, square-shaped) 

and in-range points (in blue) 
 
 
2.3 Object Filtering 

Blunders that survive above two methods can be further 
eliminated by object filtering. Buildings and trees can be 
filtered as well to generate bare-earth. 
 
Our object filter is called “ebb process”. It is similar to ebb of 
water: suppose at beginning all buildings and trees are flooded 
with water; as water ebbs away, building/tree tops will first 
come out of water and appear as standalone regions that are 
relatively simple to analysis; and then water level will drop for 
several meters before ground appears. If a region is high and 
small enough before it connects to terrain, it will be classified 
as an object (building, tree, or spike); otherwise, it will be 
merged into terrain. Fig. 3 and 4 show an example. Fig. 3 is a 
DSM together with slope edges that indicate boundaries of 
objects. Fig. 4 shows ebb process while elevation drops from 
278m to 250m. 
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Figure 3. DSM (left) of a test region and corresponding slope 

edges (right) 
 

 

 
 
Figure 4. Status at elevation levels 277.4m, 272.4m, 265.4m, 

252.2m, ordered from top to bottom. Legend: white 
(terrain), black (under water), yellow (slope edge), 
red/green (new isolated regions). Right: white 
(extracted terrain), red (filtered objects) 

 
This object filter can also be used to filter lidar point cloud. 
Preliminary test shows a good performance. 
 
 

3. EXPERIMENTAL RESULTS 

3.1 Frame Sensors 

We tested adaptive ATE on frame images with three typical 
scenes: urban, rural, and mountainous areas. 2m-resolution 

DTM in ERDAS LTF format are generated and compared with 
manually digitized baseline data, as in Table 1. 
 
 

Data Type DTM 
 Point # Check # RMSE 

(meter) 
Urban (Hamburg) 155014 170 1.51 
Rural (Quasco) 551492 65 1.48 
Mountain (Mexico) 195097 100 1.82 

 
Table 1.  ATE accuracy for frame sensors  

 
Object filtering can effectively remove most spikes as well as 
points on buildings and trees. It can cut off approximately 60% 
of manual editing time. It can also improve bare-earth quality: 
for an urban dataset (Hamburg), RMSE drops from 4.84m 
before object filtering to 1.51m after object filtering.  
 
Fig. 5 shows one example: the majority of buildings on a flat 
terrain are removed except for an over-size building and a high-
rising road that are beyond threshold.  
 
 

 

 
 

Figure 5. DSM before (above) and after (below) object filter 
 
Fig. 6 shows another example where buildings on a slope are 
removed, yet small terrain variation is still preserved. 
 
Fig. 7 shows a DSM from rural area. Points are located on both 
ground and trees and contours reveal the coverage of trees. 
After object filtering points on trees are removed and contours 
become much smoother. 
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Fig. 8 shows a mountainous scene. The initial terrain range 
from global DEM is 50~1700m. Adaptive ATE can adapt to 
both ridge and valleys. 
 

 

 
 
Figure 6. DSM before (above) and after (below) object filtering 
 

 
 
Figure 7. Points and contours before (left) and after (right) 

object filtering 
 

 
 

Figure 8. Contours of ridges and valleys from mountains 
 
For frame images, adaptive ATE is slower than traditional ATE 
and ranges from 2 times to 16 times depending on terrain type. 
However, the quality from adaptive ATE is normally better in 
terms of point density, distribution, and accuracy. Adaptive 
ATE needs more computer time but less human time because it 
reduces overhead and post-editing work.  
 

3.2 Satellite Sensors 

Adaptive ATE also works for satellite images with good 
geometry (e.g, after triangulation with control points). Table 2 
shows some results.  
 
 

Sensor Type Accuracy 
 Check # RMSE (meter) 
alos 565 11.87 
cartosat 255 7.36 
Eros 127 2.99 
ikonos 147 3.8 
quickbird 95 3.54 
worldview 700 9.15 

 
Table 2.  ATE accuracy for satellite sensors 

 
Fig. 9 shows an IKONOS image overlapped with extracted 
points and contours. Since satellite images have much lower 
resolution, point density from ATE is also very low, and the 
performance of object filtering is not as good as on frame 
images. 
 
 

 

 
 
Figure 9. IKONOS image overlapped with extracted points (red: 

points on objects; blue: points on ground) and 
contours, before (above) and after (below) object 
filtering 

 
The converge angles of some satellite stereo pairs are very 
small, so space intersection from sensor model can be very 
sensitive to small changes of parallax: at high pyramid levels, 
image coordinates of correctly-matched points are not accurate 
(at pyramid n, the uncertainty of a pixel is 2n times bigger than 
a pixel at pyramid 0 or original resolution) , so calculated z 
values from space intersection may be far out of valid range and 
be subject to elimination as blunders. It is possible to see that 
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the z values of same feature points are in range A at pyramid 
one and range B at pyramid two, yet range A and B do not 
overlap. ATE needs to address such issues by relaxing criteria 
for z values at high pyramid levels. 
 
The quality of adaptive ATE on satellite images is not 
significantly better than traditional ATE, because terrain 
variation is not significant either relative to flying height of 
satellites. The speed of adaptive ATE, however, can be faster 
than traditional ATE, because traditional ATE works best for 
epipolarimages where terrain variation mainly affects x-parallax, 
yet adaptive ATE does not assume epipolarimages, and most 
satellite images are not epipolarimages either. 
 
3.3 ADS40 Sensors 

Leica’s airborne ADS40 sensor provides multi-spectral 
pushbroom images with three looking angles (-14°, 0, +28°), 
high resolution (up to 5cm), and 5 bands (pan, rgb, and 
infrared). Normally, forward/backward configuration gives best 
configuration and highest accuracy, but it also has biggest 
distortion and is most difficult for matching. Normally customer 
uses forward/nadir or backward/nadir pair for ATE. The current 
version of ATE is handling images pair by pair. In next version, 
we will process three looking angles at the same time for better 
reliability and consistency. 
 

  

 
 
Figure 10. Contours overlapped with ADS40 images, before 

(above) and after (below) object filtering 
ADS40 normally has long strips with tremendous data flow and 
needs to be split into small blocks for efficient memory 
handling. Certain overlap between blocks is used to prevent 

block effect, which is discontinuity on block boundary and is 
very obvious on contour map.  
 
Fig. 10 shows the contours from ATE, draped on an urban 
scene. The contours without object filtering reveal shapes of 
buildings, and contours after object filtering shows general 
trend of terrain.  
 
Fig. 11 shows a DSM (without object filtering) and DTM (with 
object filtering) from ATE on ADS40 images. Most buildings 
and trees are removed and small variation of terrain is still 
preserved. 
 
 

 

 
 

Figure 11. DSM (above) and DTM (below) from ADS40  
 
 

4. SUMMARY 

This paper introduced ERDAS’s adaptive ATE and associated 
blunder detection techniques. The performance of ATE on 
frame, satellite, and ADS40 images are presented and discussed.  
 
Generally, adaptive ATE assumes piecewise continuity. During 
matching with different image pyramid levels, ATE iteratively 
applies terrain range to limit search range and uses matched 
points to update terrain range. It is suitable for natural terrain. 
For urban scene, it needs object filtering for good performance. 
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The next generation of ERDAS ATE will address occlusion 
detection and pixelwise matching to improve matching on 
urban scenes.  
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