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ABSTRACT: 
 
The improving capability of the direct geo-referencing technology is having a positive impact on the widespread adoption of LiDAR 
systems for the acquisition of dense and accurate surface models over extended areas. A typical LiDAR system consists of three 
main components: a GPS system to provide position information, an IMU unit for attitude determination, and a laser unit to provide 
the range (distance) between the laser-beam firing point and the ground point (laser footprint). The measured ranges are coupled 
with the position and attitude information from the GPS/IMU integration process as well as the bore-sighting parameters relating the 
system components to derive the ground coordinates of the LiDAR footprints. Unlike photogrammetric techniques, the derivation of 
the point cloud from the LiDAR measurements is not a transparent process. In other words, the raw system measurements are not 
always provided to the system user. Moreover, the coordinate computation of the LiDAR footprints is not based on redundant 
measurements, which are manipulated in an adjustment procedure. Consequently, one does not have the associated measures (e.g., 
variance component of unit weight and variance-covariance matrices of the derived parameters), which can be used to evaluate the 
quality of the final product. This paper is concerned with providing a tool for the quality control (QC) of the LiDAR point cloud. 
The objective of the QC procedure is to verify the accuracy of the LiDAR footprints. In other words, the QC procedure would test 
whether the expected accuracy has been achieved or not. The paper will start with a brief discussion of the LiDAR mathematical 
model relating the system measurements to the ground coordinates of the point cloud. Then, an analysis of possible systematic and 
random errors and their impact on the resulting surface will be outlined. Following the discussion of the error sources and their 
impact on the accuracy of the LiDAR footprints, a QC tool will be proposed. The paper will conclude by experimental results from a 
real dataset involving overlapping strips from operational LiDAR system. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The direct acquisition of a high density and accurate 3D point 
cloud has made LiDAR systems the preferred technology for 
the generation of topographic data to satisfy the needs of 
several applications (e.g., digital surface model (DSM) creation, 
digital terrain model (DTM) generation, orthophoto production, 
3D city modeling, and forest mapping). A typical LiDAR 
system consists of three main components: a GPS system to 
provide position information, an IMU unit for attitude 
determination, and a laser unit to provide the range (distance) 
between the laser-beam firing point and the ground point (laser 
footprint). The measured ranges are coupled with the position 
and attitude information from the GPS/IMU integration process 
as well as the bore-sighting parameters relating the system 
components to derive the ground coordinates of the LiDAR 
footprints. Although the use of LiDAR data for different 
applications has increased significantly in the past few years, 
the user community still lacks standard and efficient procedures 
for evaluating the quality of the provided point cloud. 
Compared to photogrammetric and other surveying techniques, 
the computation of the LiDAR footprints is not based on 
redundant measurements, which are manipulated in an 
adjustment procedure. Consequently, standard measures for 
evaluating the quality of the final product, such as the a-

posteriori variance factor and variance-covariance matrices of 
the derived coordinates, are not available. A commonly used 
procedure to evaluate the data accuracy compares the LiDAR 
surface with independently collected control points. Besides 
being expensive, this procedure does not provide accurate 
verification of the horizontal quality of the LiDAR footprints. 
Such inability is a major drawback since the horizontal quality 
of the LiDAR footprints is known to be inferior to the quality of 
these points in the vertical direction. 
 
In the past few years, several methods have been developed for 
evaluating and/or improving LiDAR data quality by checking 
the compatibility of LiDAR footprints in overlapping strips 
(Kilian et al., 1996; Crombaghs et al., 2000; Maas, 2000; Bretar 
et al., 2004; Vosselman, 2004; Pfeifer et al., 2005). In 
Crombaghs et al. (2000), a method for reducing vertical 
discrepancies between overlapping strips is proposed. Since the 
horizontal quality of the derived point cloud is considerably 
lower than the vertical one, this approach is not sufficient to 
evaluate the overall quality of the LiDAR data. In Kilian et al. 
(1996), an adjustment procedure similar to the photogrammetric 
strip adjustment was introduced for detecting discrepancies and 
improving the compatibility between overlapping strips. The 
drawback of this approach is relying on distinct points to relate 
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overlapping LiDAR strips and control surfaces. Due to the 
irregular nature of the LiDAR footprints, the identification of 
distinct points (e.g., building corners) is quite difficult and not 
reliable. More suitable primitives have been suggested by Maas 
(2000), where the correspondence is established between 
discrete points in one LiDAR strip and TIN patches in the other 
one. The correspondences are derived through a least-squares 
matching procedure where normal distances between conjugate 
point-patch pairs are minimized. The drawback of this work is 
that simple shifts were used as the transformation function 
relating conjugate point-patch pairs. The validity of such a 
model was not completely justified. Moreover, the estimated 
shifts were not used to derive an indication of the point cloud 
quality. Bretar et al., (2004) proposed an alternative 
methodology for improving the quality of LiDAR data using 
derived surfaces from photogrammetric procedures. The main 
disadvantage, which limits the practicality of this methodology, 
is relying on having aerial imagery over the same area. In 
addition, the proposed approach uses an affine transformation to 
relate LiDAR and photogrammetric surfaces without sufficient 
justification. In Pfeifer et al. (2005) and Vosselman (2004) 
other methods were developed for detecting discrepancies 
between overlapping strips. Detected discrepancies were used 
for strip adjustment procedures rather than system and data 
evaluation. 
 
The objective of this paper is to propose a cost-effective and 
meaningful quality control (QC) method, which is based on 
analyzing the compatibility of LiDAR data in overlapping strips. 
More explicitly, the objective of the presented research is to 
develop a tool for detecting the presence of systematic biases as 
well as inspecting the noise level in the point cloud with a 
satisfactory level of automation (i.e., requiring minimum user 
interaction). The paper will start with a brief discussion of the 
LiDAR mathematical model relating the system measurements 
to the ground coordinates of the point cloud. Then, an analysis 
of possible systematic and random errors and their impact on 
the resulting surface will be outlined. Following the discussion 
of the error sources and their impact on the accuracy of the 
LiDAR footprints, a QC tool will be proposed. The paper will 
conclude by experimental results from a real dataset involving 
overlapping strips from operational LiDAR system. The results 
have proven the feasibility of the introduced methodology to 
evaluate the quality of the LiDAR data. More specifically, the 
proposed measure detected the presence of systematic biases 
and the data noise level. Future research will focus on relating 
the detected discrepancies between overlapping strips to the 
system biases. 
 
 

2. LIDAR MATHEMATICAL MODEL 

The coordinates of the LiDAR footprints are the result of 
combining the derived measurements from each of its system 
components, as well as the bore-sighting parameters relating 
such components. The relationship between the system 
measurements and parameters is embodied in the LiDAR 
equation (Vaughn et al., 1996; Schenk, 2001; El-Sheimy et al., 
2005), Equation 1. As it can be seen in Figure 1, the position of 
the laser footprint, , can be derived through the summation 

of three vectors (
GX

oX , GP  and ρ

φω ΔΔ ,,

) after applying the appropriate 

rotations: and . In this equation, κΔ, RRyaw ,, rollpitch βα ,R

oX  is the vector between the origins of the ground and IMU 

coordinate systems, GP  is the offset between the laser unit and 

IMU coordinate systems (bore-sighting offset), and ρ  is the 
laser range vector whose magnitude is equivalent to the distance 
from the laser firing point to its footprint. The term 

 stands for the rotation matrix relating the ground 

and IMU coordinate systems,  represents the rotation 

matrix relating the IMU and laser unit coordinate systems 
(angular bore-sighting), and  refers to the rotation matrix 

relating the laser unit and laser beam coordinate systems with 

rollpitchyawR ,,

κφω ΔΔΔ ,,R

βα ,R

βα and  being the mirror scan angles. For a linear scanner, 
which is the focus of this paper, the mirror is rotated in one 
direction only (i.e., α  is equal to zero). The involved 
quantities in the LiDAR equation are all measured during the 
acquisition process except for the bore-sighting angular and 
offset parameters (mounting parameters), which are usually 
determined through a calibration procedure. 
 
 

3. LIDAR ERROR BUDGET 

The quality of the derived point cloud from a LiDAR system 
depends on the random and systematic errors in the system 
measurements and parameters. A detailed description of LiDAR 
random and systematic errors can be found in Huising and 
Pereira (1998), Baltsavias (1999), and Schenk (2001). The 
magnitude of the random errors depends on the accuracy of the 
system’s measurements, which include position and orientation 
measurements from the GPS/IMU unit, mirror angles, and 
ranges. Systematic errors, on the other hand, are mainly caused 
by biases in the bore-sighting parameters relating the system 
components as well as biases in the system measurements (e.g., 
ranges and mirror angles). In the following sub-sections, the 
impact of random and systematic errors in the system 
measurements and parameters on the reconstructed object space 
will be analyzed. 
 
3.1 Random Errors  

The purpose of studying the impact of random errors is to 
provide sufficient understanding of the nature of the noise in the 
derived point cloud as well as the achievable accuracy from a 
given flight and system configuration. In this work, the effect of 
random errors in the system measurements is analyzed through 
a simulation. The simulation process starts from a given surface 
and trajectory, which are then used to derive the system 
measurements (ranges, mirror angles, position and orientation 
information for each pulse). Then, noise is added to the system 
measurements, which are later used to reconstruct the surface 
through the LiDAR equation. The differences between the 
noise-contaminated and true coordinates of footprints are used 
to represent the impact of a given noise in the system 
measurements. The following list summarizes the effect of 
noise in the system measurements. 
 
• Position noise will lead to similar noise in the derived 

point cloud. Moreover, the effect is independent of the 
system flying height and scan angle. 

• Orientation noise (attitude or mirror angles) will affect the 
horizontal coordinates more than the vertical coordinates. 
In addition, the effect is dependent on the system flying 
height and scan angle. 
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• Range noise mainly affects the vertical component of the 
derived coordinates. The effect is independent of the 

system flying height. The impact, however, is dependent 
on the system’s scan angle. 
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Figure 1. Coordinate systems and involved quantities in the LiDAR equation 
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(2) The discrepancies can be used for diagnosing the nature of 
the systematic errors in the system parameters. 

Through the proposed simulation, it could be noticed that noise 
in some of the system measurements affects the relative 
accuracy of the derived point cloud. For instance, a given 
attitude noise in the GPS/INS derived orientation affects the 
nadir region of the flight trajectory less significantly than off 
nadir regions. Such   a   phenomenon   is contrary   to   derived 
surfaces from photogrammetric mapping where the 
measurements noise does not affect the relative accuracy of the 
final product. An additional conclusion that could be drawn 
from the simulation experiments is that the introduction of noise 
in the system measurements does not lead to systematic 
discrepancies between conjugate features in overlapping strips. 

 
 

4. QUALITY CONTROL METHOD 

The proposed quality control tool is based on evaluating the 
degree of consistency among the LiDAR footprints in 
overlapping strips to check the internal/relative quality of the 
LiDAR data. The conceptual basis of the QC methodology is 
that conjugate surface elements, which can be identified in 
overlapping strips, should match as well as possible. If 
consistent discrepancies are detected, then one can infer the 
presence of biases in the system parameters and/or 
measurements. Other than the ability to detect systematic errors 
in the data acquisition system, the proposed methodology will 
also evaluate the noise level in the data by quantifying the 
goodness of fit between conjugate surface elements in 
overlapping strips after removing systematic discrepancies. 

 
3.2 Systematic Errors  

In this work, the impact of systematic errors/biases in the bore-
sighting parameters (spatial and rotational) on the derived point 
cloud will be analysed. A simulation process was accomplished 
for that purpose. The process starts from a given simulated 
surface and trajectory, which are then used to derive the system 
measurements (ranges, mirror angles, position and orientation 
information for each pulse). Then, biases are added to the 
system parameters, which are used to reconstruct the surface 
through the LiDAR equation. The differences between the bias-
contaminated and true coordinates of the footprints within the 
mapped area are used to represent the impact of a given bias in 
the system parameters or measurements. Due to the presence of 
systematic errors in the system parameters, the bias-
contaminated coordinates of conjugate points in overlapping 
strips will show systematic discrepancies. The following 
conclusions could be drawn from the simulation experiments: 

To reliably evaluate the consistency between overlapping strips, 
one must address the following questions: 
 
• What is the appropriate transformation function relating 

overlapping strips in the presence of systematic biases in 
the data acquisition system? 

• What are the appropriate primitives, which can be used to 
identify conjugate surface elements in overlapping strips 
comprised of irregular sets of non-conjugate points? 

• What is the possibility of automatic derivation of these 
primitives? 

• What is the possibility of automated identification of 
conjugate primitives in overlapping strips?  

(1) The discrepancies caused by the bore-sighting offset and 
angular biases can be modelled by shifts and a rotation 
across the flight direction. Therefore, a six-parameter 
rigid-body transformation (three shifts and three rotations) 
can be used to express the relationship between conjugate 
features in overlapping strips. 

• What is the appropriate similarity measure, which utilizes 
the involved primitives and the defined transformation 
function to describe the correspondence of conjugate 
primitives in overlapping strips? 
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The answer to the first question has been already established in 
section 3.2, where it has been verified through a simulation 
procedure that conjugate points in overlapping strips are related 
to each other through a transformation function involving 
constant shifts and a rotation angle across the flight direction. 
Therefore, a six-parameter rigid-body transformation (three 
shifts and three rotation angles) can be used as the 
transformation function relating overlapping strips in the 
presence of the bore-sighting spatial and angular biases. The 
answers to the remaining questions depend on the nature of the 
utilized primitives. The following subsections present the 
answers to the above questions as they pertain to the selected 
primitives. 
 
4.1 Primitives Extraction and Matching 

Since the LiDAR footprints are irregularly distributed, no point-
to-point correspondence can be assumed between overlapping 
strips. In this regard, other primitives must be investigated. In 
this work, the use of linear features derived from the 
intersection of neighbouring planar patches is proposed. LiDAR 
provides high redundancy in planar surfaces. Therefore, the 
plane parameters can be derived with high accuracy using an 
adjustment procedure (e.g. plane fitting). The larger the planar 
surface, the greater will be the point cloud noise reduction. 
Therefore, high accuracy linear features can be extracted by 
intersecting neighboring fitted planes. To do so, an environment 
for the extraction and matching of linear features in overlapping 
strips was developed. The process starts by displaying the 
LiDAR intensity images for overlapping strips where the 
operator selects an area where linear features might exist (e.g. 
roof ridge line). The user clicks on the centre of the area after 
defining the radius of a circle, within which the original LiDAR 
footprints will be extracted. It should be noted that the LiDAR 
intensity images are only used for visualization purposes. The 
user needs to establish the area of interest in one of the strips 
and the corresponding areas in the other strips are automatically 
defined. Figure 2a shows the specified area in one of the strips 
as well as the original LiDAR footprints in that area. Then a 
segmentation technique (Kim et al., 2007) is used to identify 
planar patches in the point cloud within the selected area. This 
segmentation procedure is independently run on the point cloud 
for all the overlapping strips. The outcome from such 
segmentation is aggregated sets of points representing planar 
patches in the selected area (bottom right portion in Figure 2b). 
For the linear features extraction, neighbouring planar patches 
are identified and the plane parameters determined. Then, the 
neighboring planes are intersected to produce an infinite 
straight-line. Using the segmented patches, the infinite line and 
a given buffer, the end points for the intersected line can be 
defined (top left portion in Figure 2b). This procedure is 
repeated for several areas within the overlap portion in the 
involved strips. 
 
The outcome of the extraction procedure is a set of linear 
features in overlapping strips. Due to the nature of the LiDAR 
data acquisition (e.g., scan angle, surface normal, surface 
reflectivity, occlusions), there is no guarantee that there is one-
to-one correspondence between the extracted primitives from 
overlapping strips. To solve the correspondence problem, one 
has to utilize the attributes of the extracted primitives. 
Conjugate linear features can be automatically matched using 
the normal distance, parallelism, and the percentage of overlap 
between candidate lines in overlapping strips (Figure 3). A 
graphic visualization of matched linear features is presented to 

the user for final confirmation of the validity of the matched 
primitives. 
 

(a) (b) 
 

Figure 2. Area of interest selection and LiDAR point cloud 
extraction (a), and extracted linear features by intersection of 

segmented planar patches in the area of interest (b) 
 

 
 

Figure 3. Matching of conjugate linear features in overlapping 
strips 

 
4.2 Similarity Measure 

In this section, the similarity measure, which incorporates the 
matched primitives together with the established transformation 
function to mathematically describe their correspondence, is 
introduced. Conjugate lines will be represented by their end  
 
 

 
 

Figure 4. Underlying concept for the incorporation of linear 
features in a line-based approach for the determination of the 

transformation parameters. 

3D Rigid-body 
Transformation 
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points, which need not be conjugated. In order to compensate 
for the non-correspondence between the line end points, we will 
introduce the necessary constraints to describe the fact that the 
line segment from the LiDAR strip 2 coincides with the 
conjugate segment from the overlapping LiDAR strip 1 after 
applying the 3D rigid-body transformation (Figure 4). The 
mathematical representation of this constraint for these points is 
shown in Equation 2. 
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Where: 
( T

TTT ZYX ,, ) is the translation vector between the strips. 
 

),,( ΚΦΩR is the required rotation matrix for the co-alignment of 

the strips, and 1λ  and 2λ are the scale factors. 
 
By subtracting Equation 2a from Equation 2b, and eliminating 
the scale factors (by dividing the first two rows by the third one 
in order) result in Equation 3 which relates the rotation 
elements of the transformation to the coordinates of the points 
defining the line segments. 
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The estimation of the two rotation angles (the azimuth, and the 
pitch angle along the line) is possible by writing the equations 
3a and 3b for a pair of conjugate line segments. On the other 
hand, the roll angle across the line cannot be estimated. 
Therefore, a minimum of two non-parallel lines is needed to 
recover the three elements of the rotation matrix ( )ΚΦΩ ,, . To 
allow for the estimation of the translation parameters, the terms 
in equations 2a and 2b are re-arranged and the scale factors 
eliminated (by dividing the first two rows by the third one) to 
come up with Equation 4. Overall, to recover all six parameters 
of the transformation function, a minimum of two non-coplanar 
line segments is required. For a complete description of this 
approach refer to Habib et al., 2004.  
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4.3 Noise Level Verification 

So far, we have introduced a methodology for detecting 
systematic errors in the data acquisition system. It is important 
to emphasise that for a LiDAR system with only random errors, 
the estimated transformation parameters should be zeros for the 
translation and rotation parameters. In other words, the 
expected values will not change with varying noise levels in the 
LiDAR point cloud. In this section, we are interested in a 
similarity measure for the evaluation of the noise level in the 
data. 
 
In this work, the noise level in the LiDAR data will be 
evaluated by quantifying the goodness of fit between conjugate 
primitives after removing existing discrepancies between 
overlapping strips. This can be accomplished by computing the 
average normal distance between conjugate linear features after 
applying the estimated transformation parameters. 
  
 

5. EXPERIMENTAL RESULTS 

To evaluate the validity of the proposed QC methodology, 
experiments were performed using a real dataset. The dataset 
used in the experiments covers and urban area consisting of 
three strips as shown in Figure 5. The specifications of this 
dataset are shown in Table 1. 
 
 

 
Figure 5.  Dataset used in the experiments 

SSttrriipp 22

 
 

Sensor Model Optech 2050 
Flying Height ~1000 m 
Ground Point Spacing ~0.75 m 
1 survey day 3 strips 
Horizontal accuracy 50 cm 
Vertical accuracy 15 cm 

 
Table 1.  Dataset specifications 
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Using the semi-automated procedure described in section 4.1, 
we extracted conjugate lines in the three overlapping strips 
(Figure 6). Table 2 shows the estimated transformation 
parameters. As it can be seen in this table, there is a significant 
discrepancy between conjugate lines in overlapping strips 
especially in the X direction. Such discrepancies indicate the 
presence of biases in the system parameters and/or 
measurements.  
 

 
  Strips  

1&2 
Strips  
2&3 

Strips  
1&3 

Transf. Parameters/ # of lines 14 11 13 
XT (m) 0.39 0.72 -0.09 
YT (m) 0.06 -0.17 0.21 
ZT (m) 0.01 0.01 -0.14 
Ω (°) -0.0174 -0.0300 0.0119 
Φ (°) -0.0096 -0.0093 0.0011 
Κ (°) 0.0027 -0.0133 -0.0212 

RMSE (m) 0.12 0.15 0.20 
 

Table 2.  Estimated transformation parameters using conjugate 
linear features in overlapping strips together with the RMSE 

after applying the transformation 
 
 

 
 

Figure 6.  Extracted lines in the three overlapping strips 
 

The noise level was evaluated by computing the average normal 
distance between conjugate linear features after applying the 
estimated transformation parameters. The results are reported in 
Table 2. 
 
 

6. CONCLUSIONS 

This paper has outlined a new tool for the evaluation of LiDAR 
data quality. The paper started with a brief analysis of random 
and systematic errors in the system measurements and 
parameters and their impact on the derived point cloud 
coordinates. From this analysis some conclusions regarding the 
mathematical relationship between conjugate surface elements 
in overlapping strips could be drawn. It was concluded that a 
rigid body transformation is an appropriate model for relating 
conjugate points in the presence of the biases in the bore-
sighting parameters (spatial and rotational). Following such an 
analysis, the paper introduced a quality control procedure based 

on the use of linear features, which can be used to check for the 
presence of systematic errors in the data acquisition system as 
well as evaluating the noise level in the delivered point cloud. 
The proposed procedure has a satisfactory level of automation 
requiring minimal interaction from the operator (just a few 
clicks on the intensity image). The results from the real data 
have shown that collected LiDAR data might exhibit significant 
incompatibilities due to insufficient calibration procedures. 
Future research will focus on relating the detected discrepancies 
between overlapping strips to the system biases. Moreover, we 
will be using the estimated transformation parameters to 
remove the bias effect from the point cloud. In addition, the 
estimated system biases will be compared to those derived from 
rigorous calibration procedures. The presented models for linear 
scanner will be also expanded to include elliptical LiDAR 
systems. Also, we will be developing some standards and 
specifications that will allow for the acceptance or rejection of 
delivered point cloud to the end user. With the wide spread 
adoption of LiDAR systems for topographic data acquisition, 
we believe that this research is critical to strengthen the users’ 
confidence in the delivered point cloud especially in the 
absence of traditional measures, which are provided by other 
mapping techniques. 
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