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ABSTRACT:  
 
Data storage capacity and high processing speed available today has made it possible to digitally sample and store the entire reflected 
waveform of Small-Footprint Airborne Lidar (light detection and ranging), instead of only extracting the discrete coordinates which 
form the so-called point clouds. One of the most important advantages from waveforms data is that it gives the user the chance to 
extract three-dimensional coordinates by himself in the post-processing. Decomposition return waveform is a key step during 
analyzing waveform data. Conventional algorithm to decompose is maximum and centre of gravity, or simply by using the 
thresholding method provided by equipment vendor. Both show lack of high accuracy. In this paper, an improved Expectation 
Maximum (EM) algorithm is adopted to extract peak location and pulse width from raw waveform data, proving it is a reliable and 
high accurate decomposition algorithm. Moreover, the high-quality point-cloud data could be obtained which provides high-quality 
resources for DSM(Digital Surface Model) and DTM（Digital Terrain Model） production. Derived forest biophysical parameters, 
such as vegetation height and crown volume are able to describe the horizontal and vertical forest canopy structure. 
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1. INTRODUCTION 

In the last ten years, airborne laser scanning is a rapidly growing 
technology which has initially been conceived for topographic 
mapping. Airborne laser scanners employ, with few exceptions, 
pulsed lasers that repetitively emit short infrared pulses towards 
the Earth’s surface. Some of the energy is scattered back to the 
sensor where it is measured with an optical receiver. A timer 
measures the traveling time of the pulse from the laser scanner 
to the Earth’s surface and back, the integration of laser with 
GPS and INS for position and orientation determination. 
Nowadays, ALS is used routinely for topographic mapping and 
is considered to hold a large potential in a range of other 
applications such as forestry, 3D city modeling or power line 
detection. 
 
Development of airborne laser scanning goes back to the 1970s 
and 1980s. The first commercially available airborne laser 
scanners recorded the time of one backscattered pulse. The 
recording of only one pulse is sufficient if there is only one 
target within the laser footprint. State-of-the-art commercial 
laser scanners typically measure first and last pulse; some are 
able to measure up to five pulses. In order to derive digital 
terrain models (DTMs), laser pulses reflected by the ground 
surface must be distinguished from non-terrain points. This task 
can be achieved using various filtering techniques that classify 
the point cloud into terrain and off-terrain points just based on 
the spatial relationship of the 3D data. For many applications, 
this has been deemed the suitable form of output. However, the 
user has no way of knowing how the electronics of his LIDAR 
system actually determine the location of the returns they report, 
nor of any distortions of the pulse shape that receiver electronics 
or surface structures may have imposed upon the pulse echo. 
LIDAR system manufacturers are tight-lipped about the pulse 
detection methods their systems employ. However, as Wagner 
et al. (2004) point out the choice of pulse detection methods has 
significant impact on accuracy, and in practice causes a number 
of effects that reduce the quality of the measurements, like 
amplitude dependant range walk, slope dependency of range, 

signal ringing causing outlier measurements below the terrain 
level, etc. In addition, with mere range output much of the 
informational content about structured surfaces is lost. 
 
The solution is to digitally sample and store the entire echo 
waveform of reflected laser pulses. Digitizing and recording the 
complete backscattered waveform during the acquisition for 
later post-processing has the advantages that algorithms can be 
adjusted to tasks, intermediate results are respected, and 
neighborhood relations of pulses can be considered. The 
technical feasibility has been demonstrated by large-footprint 
airborne systems developed by NASA in the 1990s, namely the 
Scanning Lidar Imager of Canopies by Echo Recover (SLICER) 
and the Laser Vegetation Imaging Sensor (LVIS). Recently, 
three commercial airborne systems have become available, such 
as Figure 1,namely the RIEGL LMS-Q560、Toposys FalconIII、
Leica ALS-II、Optech ALTM 3100E. 
 

 
Fig.1 waveform Digitization 

 
An approach based on unsupervised learning is presented where 
a mixture of Gaussian distributions are fitted to the waveforms 
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to detect and parameterize the peaks. This approach uses the 
Expectation Maximation (EM) algorithm (Dempster et al., 
1977). A detection algorithm based on the 
expectation-maximization (EM) algorithm is used to estimate 
the number of echo pulses of the waveforms. 
 
 

2. GENERATION AND DECOMPOSITION OF 
WAVEFORM 

The power entering the receiver is 
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is the transmitted power;  is the received power; is the 
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cross-section;  is the receiver impulse function;* is the 
convolution operator. In practice,  and Γ(t) cannot be easily 
determined independently. Therefore it is advantageous to 
rewrite the convolution term by making use of the commutative 
property of the convolution operator: 
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where we introduce the system waveform S(t) of the laser 
scanner, defined as the convolution of the transmitted pulse and 
the receiver response function. It can be measured 
experimentally and is shown in Figure. 2 for the Riegl 
LMS-Q560. It can be seen that it is well described by a 
Gaussian function: 
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Ŝ is the amplitude， is the standard deviation. In order to 
come to an analytical waveform solution, let us assume that the 
scattering properties of a cluster of scatterers can be described 
by a Gaussian function: 
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The convolution of two Gaussian curves gives again a Gaussian 
function, so that we obtain:  
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Thus it can be seen the return waveforms are made up by 
Gaussians has proven to be a fairly good approximation. 

 
 

Fig.2 System waveform of RIEGL LM-5600 
 
 

3. ALGORITHM OF DECOMPOSING WANEFORM 

To consistently geolocate the desired reflecting surface, for 
example, the underlying ground surface in vegetated regions, 
we need to be able to precisely identify the corresponding 
reflection within the waveform. Existing waveform processing 
methods generally do not take into account surface type nor its 
effect on the shape of the return laser pulse, and thus do not 
provide a consistent ranging point to a reflecting surface during 
data processing. These methods include finding the location of 
the peak amplitude within the waveform or the location of the 
centroid of the return waveform. Experiments illustrate that 
there is no such thing as a single best detector, rather the 
relative performance of the detectors depends on factors such as 
the characteristics of the effective scattering cross section, 
object distance and noise level. 
 
Thus, we propose to decompose a return waveform into 
components, the sum of which can be used to approximate the 
waveform and the locations of which can be used to improve 
the geolocation accuracy of the laser altimeter. We will assume 
that each mode represents the reflected distribution of laser 
energy from a reflecting surface within the footprint, and that 
the location of each mode can be used to geolocate the 
reflecting surface of interest in the vertical direction. Gaussian 
decomposition presents us with one possible model of the 
reflections contained in a complex, multi-modal waveform. 
 
As a first approximation we will assume that the laser output 
pulse shape or impulse response (i.e., the shape of the outgoing 
laser pulse after passing through the full detector and digitizer 
chain) is Gaussian. We further assume that the returning laser 
pulse is composed of a series of potentially-overlapping 
reflections similar in shape to the impulse response (i.e., in this 
case by a series of Gaussian-shaped reflections). As was shown 
in the theory part of the paper, the implicit assumption of 
Gaussian decomposition is that the cross-section profile can be 
represented by a series of Gaussian functions. 
 
It is of interest to extract more than the first and the last echo 
from each waveform. Also, the width of the echoes is of interest. 
A detection algorithm based on the improved 
expectation-maximization (EM) algorithm is used to estimate 
the number of echo pulses of the waveforms. The algorithm also 
outputs the width of the echo pulses. Unsupervised learning is a 
method of machine learning where a model is fitted to 
observations. An important part of the unsupervised learning 
problem is determining the number of components or classes 
which best describe the data. 
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Unsupervised learning will be used in this thesis to detect echo 
pulses. This is done by fitting Gaussians to the waveforms. It 
will be assumed that the waveforms were generated from a 
distribution which is the sum of simpler distributions. That is, 
the samples of the waveforms are assumed to arise from the 
following distribution. 
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Where k is the number of Gaussians, is the Gaussian 

probability density function,  is the relative weight 

of , 
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deviation of the fitted Gaussians. 
The EM algorithm, which will be used to fit the Gaussians to 
the waveforms, is a widely used approach in learning the 
presence of unobserved variables. Original formula of EM 
algorithm: 
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ijQ  is the probability that sample i belongs to component j and 

k is the number of components that are fitted to the 
waveforms .For each component j, the mean value jμ and 

standard deviation jσ  are estimated. The mean value jμ  

will be used as the position of the echo and the standard 
deviation jσ  as the width of the echo. The likelihood 

estimates for jμ  and jσ  are found by iterating through 

formula (1)-(4). The algorithm needs to be initialized with start 
values.  
 
In the estimation step of the EM algorithm, the expected value 
of each hidden variable is calculated assuming that the current 
hypothesis holds.. In the maximization step (2)-(4), a new 
maximum likelihood hypothesis is calculated assuming that the 
value taken on by each hidden variable is its expected value 
calculated in the estimation step. The hypothesis is replaced by 
the new hypothesis and a new iteration is made. However, 
original formula of EM algorithm does not take into account the 
intensity of sample i. consequence of the improved EM 
algorithm: 
 
Formula (2) insert in formula (3)-(4): 
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Now, intensity  insert in numerator and denominator: iN
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Now, formula (7)-(8) revert to form of EM algorithm: 
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S is the number of samples in the waveform and  is the 
intensity for sample i . 

iN

 
 

4. EXPERIMENTS AND DISCUSSION 

4.1  SLICER 

The SLICER .dat data files are derived from the standard Laser 
Altimeter Processing Facility .geo files which include 
geolocation results and instrument data. The inclination and 
azimuth of the transmit pulse are also derived from the .geo roll, 
pitch and yaw data, simplifying correction for waveform slant 
range distances. The diameter of each laser footprint, based on 
an approximate laser divergence and the ranging distance, is 
also provided. 
 
4.1.1 Pre-processing 
Figure 4 and Figure 5，The waveforms have to be thresholded to 
remove noise before the EM algorithm is applied. The threshold 
is derived on a per shot basis by establishing the mean 
background noise occurring in the waveform record, the last 5% 
of the waveform record is used to calculate threshold noiseσ . 

All samples of the waveform below the threshold noiseσ  are 
then set to zero. 
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Fig.4 Unprocessed waveform 

 
 

 
Fig.5 Pre-processed waveform 

 
4.1.2 Start values 
The correctness of the initial values of jμ ,  andjp jσ  is 

important for the EM algorithm to generate a good estimate. 
The initial value for jμ , is found by smoothing the 

pre-processed signal and First derivative of waveform, Figure 6. 
The initial values for jμ  are placed in the positions of the 

local maxima. If there are more components to estimate than the 
number of local maxima, the extra start values are put in the 
position of the local maxima with the greatest number of 
consecutive nonzero samples. Figure 7 illustrates a waveform 
(solid) and its initial estimates (dashed). The start values for  

are set so that all components have an equal weight and 

jp

jσ is 

set to 7. 
 
Waveform (solid) and Three gauss components(dashed) have 
been estimated from the waveform in Figure 8. The estimated 
parameter : 1μ =54、 1σ =9.0、 2μ =89、 2σ =8.5、 3μ =131、

3σ =7.2. 
 
 

 
 

Fig.6 First derivative of waveform 

 
Fig.7 Waveform of initial estimates 

 
 

 
Fig.8 processed waveform 

 
Figure 9, Automated last return detection software is applied to 
the backscatter waveform to identify the start, peak, and end of 
the last return, inferred to be from the ground. In Figure 9 the 
laser pulse hits the canopy first and creates one echo pulses. A 
fraction of the laser pulse also hits the ground giving rise to a 
twice echo pulse. The vertical lines in the figure illustrate the 
positions of the ground extracted by the SLICER.  
 
 

 
Fig.9 Ground location of SLICER 

 
 

 
Fig.10 Simulated waveform 
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Figure 10. Waveform (solid) and two fitted Gauss components 
(dashed), 1μ =57、 1σ =7.3、 2μ =83， 2σ =7.3. Vertical lines 
show the positions of the echoes extracted by the Gaussian 
decomposition. The EM algorithm performs well in 
decomposing overlapping echo pulses. 
 
 

 
Fig.11 Ground location of SLICER 

 
 

 
Fig.12 Simulated waveform 

 
In Figure 11, algorithm of SLICER has detected only one 
peak that is ground, but three gauss components have been 
estimated from the waveform by Gaussian decomposition in 
Figure 12.  
 
4.2  RIEGL 

Riegl waveform data is provided in two files, LWF files 
containing the calibrated waveform sample data, LGC files 
containing the geocoding and indexing information for each 
laser shot. Each waveform consists of a byte array of 
STRTWFLEN (start waveform length) samples representing the 
(emitted) start pulse waveform of a laser shot for reference, 
followed by a byte array or ushort array of WFLEN (waveform 
length) samples representing the surface return waveform. The 
distance from one sample to the next (1 bin) is 0.149855 m. 
such as Fig 13. 
 
 

 
 

Fig.13 Unprocessed waveform of RIEGL 

Due to Each waveform consists of the (emitted) start pulse 
waveform of a laser shot for reference. The threshold noiseσ  is 
derived on a per shot by calculating the mean of the last 5% of 
the waveform record, jσ is set to 1. Fig14 is Pre-processed 

waveform, horizontal lines show the positions of 
threshold noiseσ . 
 
 

 
Fig.14 Pre-processed waveform 

 
 

 
Fig.15 Simulated waveform 

 
Three gauss components have been estimated from the 
waveform in Figure 15, Vertical lines show the positions of the 
echoes extracted by the Gaussian decomposition, 1μ =16.4、

1σ =1.6、 2μ =23、 2σ =1.9、 3μ =35.1、 3σ =0.8. 
The performance of the system is to be compared to the 
performance of the EM algorithm. Table1 summarizes the 
performance of the two detection methods. It is obvious that 
post-processing of registered waveforms yield more information 
than the coordinates that the system outputs. 
 
 
Number of 
echoes per 
waveform

Point-cloud of 
gaussian 

decomposition

Point-cloud 
of system 

Number of 
additional 

echoes 
1 2452648 2469309 -16661 
2 426474 85208 +341266 
3 51970 664 +51306 
4 3969  +3969 
5 230  +230 
6 13  +13 
7 1  +1 
 2935305 2555181 +380124 

 
Tab.1 comparison of the system and Gaussian 

decomposition 
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Registering the waveforms has made it possible to extract more 
than three echo pulse for each waveform and also to compute 
the width of the echoes. Pose-processing also enables detection 
of echoes with a smaller separation than the system does. A 
greater beam divergence would probably yield more multiple 
echo pulses since more objects would be illuminated by the 
same laser beam. 
 
4.3 Waveform for forestry application 

Lidar remote sensing has vast potential for the direct 
measurement and estimation of several key forest characteristics 
(Table 1). The direct measurements of small-footprint lidar are 
canopy height, subcanopy topography, and the vertical 
distribution of intercepted surfaces between the canopy top and 
the ground. Other forest structural characteristics, such as 
aboveground biomass, are modeled or inferred from these direct 
measurements 
 
4.3.1 Treeheight 
With small-footprint systems, the first return above a noise 
threshold can be used to estimate the top of the canopy, and the 
midpoint of the last return represents the ground return. 
 
 

振幅

时间(ns)  
 

Fig16 Treeheight 
 
 

 
 

Fig17 Map of treeheight 

 
 

Fig18 Map of treeheight 
 
4.3.2 Crown volume 
 

振幅

时间(ns)  
Fig19 Sketch map of Crown volume 

 

 
 

Fig20 Local Crown volume 
 
 

5 CONCLISION 

In anticipation of the potential of full-waveform lasers for 
vegetation mapping experimental systems have already been 
built and tested by NASA. Soon, also commercial 
full-waveform systems have became available. It appears that 
full-wave systems will much enhance our capability to map 
natural and artificial objects, but this comes at a cost: Instead of 
having one or a few trigger pulses the whole discrete signal 
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must be stored. Major research and development efforts will be 
needed in order to develop algorithms and software that can 
efficiently transform the recorded waveform clouds into 
geo-spatial data sets. EM algorithm has been created to 
decompose a laser altimeter return waveform from simple and 
complex surfaces into a series of Gaussians. By analysis of the 
backscattered signal, it should also be possible to determine 
quality parameters for a given range measurement, which can be 
used as a direct input into further processing steps. 
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