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ABSTRACT: 
 
LiDAR systems are complex multi-sensory systems and include at least three main sensors: GPS, IMU navigation sensors, and the 
laser-scanning device. High-performance integrated GPS/IMU systems provide the navigation solution for the LiDAR data 
acquisition platform, and therefore, the proper calibration, including individual and inter-sensor calibration, is a must to achieve the 
highest accuracy of the output data. Specifically regarding the boresight misalignment, the spatial relationship between the IMU 
body frame and the LiDAR body frame is of high importance as it could be the largest source of systematic errors in airborne MMS, 
and thus must be determined before the system can be effectively utilized. In this research, the feasibility of using urban areas for 
boresight misalignment is investigated. In particular, the impact of the building shape, size, distribution, etc. on the performance of 
the boresight misalignment process, is of interest. In this study, photogrammetrically restituted buildings were used as the reference 
surfaces, called ‘building-positions’ or ‘reference-positions’. The influence of the number of ‘building-positions’ and their 
distribution on the boresight’s misalignment parameter estimation is investigated and evaluated through QA/QC statistical tests.  
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

LiDAR (Light Detection And Ranging, also known as Airborne 
Laser Scanning – ALS) is a highly automated and still rapidly 
evolving technology, with excellent vertical accuracy of point 
measurements. LiDAR has many benefits, and is quickly 
becoming the prime technology for large-scale acquisition of 
elevation data due to its capability to directly measure 3D 
coordinates of a huge number of points. LiDAR systems are 
complex multi-sensory systems including: GPS (Global 
Positioning System), and IMU (Inertial Measurement Unit, also 
known as INS Inertial Navigation System) navigation sensors, 
and the laser-scanning device. Most of the new systems also 
include a medium format digital camera to provide 
conventional image coverage of the surveyed area. A variety of 
highly specialized systems based on modern imaging sensors, 
such as CCD cameras, LiDAR, and hyper/multi-spectral 
scanners, have been developed in the last decade. LiDAR is 
considered as a basic component of airborne Mobile Mapping 
Systems (MMS) (for details see Bossler and Toth, 1995; 
Schwarz et al., 1993; El-Sheimy et al., 1995). The proper 
calibration of this MMS, including individual and inter-sensor 
calibration, is a must to achieve the highest accuracy of the 
output data. Particularly regarding the boresight misalignment, 
the spatial relationship between the IMU body frame and the 
LiDAR body frame is of high importance, as it could be the 
largest source of systematic errors in airborne MMS, and thus, 
must be determined before the system can be effectively 
utilized (Burman, 2000). In most installations, the lever arms 
between LiDAR/GPS/IMU sensors can be determined 
separately by independent means, with good accuracy. In sharp 

contrast, the determination of the boresight angles is only 
possible in-flight once the GPS/IMU derived orientation 
becomes sufficiently accurate (Skaloud and Lichti, 2006).  
 
Despite several years of progress, the boresight estimation 
between the LiDAR and IMU sensors is still heavily researched. 
Baltsavias (1999) presents an overview of basic relations and 
error formulas concerning airborne laser scanning. Also a large 
number of publications report the existence of systematic errors 
(Schenk, 2001; Filin, 2001). The solutions for dealing with and 
eliminating the effect of systematic boresight misalignment 
errors can be categorized into two groups. Techniques in the 
first group are based on the introduction of a correction 
transformation of the laser points to minimize the difference 
between the corresponding LiDAR points and the ground truth; 
for instance, Kilian et al. (1996), Pothou et al. (2007), use 
surface patches while Csanyi and Toth, (2007) investigate the 
achievable LiDAR data accuracy improvement using LiDAR-
specific ground control targets. This technique is frequently 
called data driven. In contrast, the other group attempts to 
rigorously model the system to recover the systematic errors 
(Burman, 2000) and treats the discrepancies between 
overlapping strips, including navigation and sensor calibration 
errors, as orientation errors.  
 
Since the ground surfaces are not always known, or at the 
required accuracy level, preference has been given to 
techniques which do not require a priori knowledge of the 
surface (Toth and Csanyi, 2001; Toth et al., 2002). This  
alternative solution is independent from ground control, and can 
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determine the boresight misalignment angles using overlapping 
LiDAR strips, flown in different directions.  
 
Not long ago, another rigorous class of calibration procedures 
started to emerge (Filin, 2003; Friess, 2006; Skaloud and Lichti, 
2006; Scaloud and Schaer, 2007). These types of approaches 
model all systematic errors directly in the measurement domain 
and condition groups of points to reside on a common surface 
of known form.  
 
The earlier methods, related to LiDAR strip adjustment, also 
addressed the effects of systematic errors in the registration 
(which was based on DEM matching) of overlapping point 
clouds. For extended literature review about co-registration, see 
in Pothou et al., 2006a; Pothou et al., 2006b. 
 
Currently the most common method of calibrating a LiDAR 
sensor is also the least rigorous: profiles of overlapping strips 
are compared and an experienced operator manually adjusts the 
misalignment angles until the strips appear to visually fit. 
Although practical, this approach is time consuming and labor 
intensive and the results do not immediately provide any 
statistical measure on the quality of the calibration (Morin and 
El-Sheimy, 2002). Furthermore, the existing methods often 
cannot reliably recover all three of the angular mounting 
parameters. The undetermined parameter(s) propagate into the 
subsequently captured data, therefore compromising the 
accuracy of any derived product. Thus, much research effort is 
still devoted to improve these processes. Most of the adopted 
approaches are usually based on either physical boundaries or 
cross-sections (Schenk, 2001) or DTM/DSM gradients (Burman, 
2000), mimicking the photogrammetric calibration approach via 
signalized or intensity-deduced targets points. The drawbacks 
of these methods is the lack (or simplification) of assurance 
measures, correlation with the unknown terrain shape or limits 
imposed by laser pointing accuracy and uncertainty due to 
beam-width. Habib et al. (2007), proposed a LiDAR system 
self-calibration using planar patches derived from 
photogrammetric data. Not only is the mathematical model for 
the LiDAR system calibration by using control planar patches 
presented but also the optimal configuration for flight 
conditions and the distribution of planar patches, to avoid 
possible correlations have also been analysed. 
 
Pothou et al. (2007), introduced a novel prototype algorithm for 
observing, and subsequently determining the boresight 
misalignment of LiDAR/IMU, using two different surfaces 
(point datasets). This algorithm minimizes the distances 
between points of the target surface and surface patches (TINs) 
of the reference surface, along the corresponding surface 
normals (based on Schenk et al., 2000). The technique can be 
applied to various data combinations, such as matching LiDAR 
strips or comparing LiDAR data to photogrammetrically 
derived surfaces. Object of simple shape similar to man-made 
structures, such as buildings, have been chosen and constructed 
to perform the surface matching. The processing algorithm 
includes additional testing of the validity, accuracy, and 
precision of various statistical tests (QA/QC - Quality 
Assurance/Quality Control) for outlier detection in positioning 
and attitude data. 
 
In this research, the feasibility of using urban areas for 
boresight misalignment is investigated. Buildings are of 
particular interest; in other words, what the impact of the 
building shape, size, distribution, etc. is on the performance of 
the boresight misalignment process. Photogrammetrically 

restituted buildings were used as reference surfaces called 
‘building-positions’ or ‘reference-positions’. The influence of 
the number and distribution of the necessary ‘building-
positions’ on boresight’s misalignment parameter estimation is 
evaluated. Experiments with various number of ‘building-
positions’ in regular as well as random distribution are 
presented, analyzed and evaluated through QA/QC statistical 
tests. The optimum number and distribution of ‘building-
positions’ have been determined and proposed. 
 
In Section 2, a short review of the status of multi-sensor 
calibration and boresight misalignment of LiDAR/IMU is 
provided. Section 3 outlines the mathematical model of the 
algorithm for the boresight misalignment and presents the 
statistical analysis of the QA/QC techniques supported by the 
LiDAR/IMU boresight misalignment calculation. In Section 4, 
the dataset used for testing is described. The experimental 
results, as well as their statistical analysis and their effects on 
LiDAR points, are described in Section 5. Section 6 concludes 
the research. 
 
 

2. MULTI SENSOR CALIBRATION - BORESIGHT 
MISALIGNMENT 

The IMU frame is usually considered as the local reference 
system of the MMS system, and thus, the navigation solution is 
computed within this frame. The spatial relationship between 
the laser scanner and the IMU is defined by the offset and 
rotation between the two systems. To obtain the local object 
coordinates of a LiDAR point, the laser range vector has to be 
reduced to the IMU system by applying the offsets and rotations 
between the two systems, which provides the coordinates of the 
LiDAR point in the IMU system. The GPS/IMU based 
navigation provides the orientation of the IMU frame, including 
position and attitude, and thus, the mapping frame coordinates 
can be subsequently derived. In our discussion, the 
determination of the boresight offset (bx, by, bz) and the 
boresight matrix (rotations ω, ϕ, κ) between the IMU and the 
laser frame (provided that sufficient ground control is available) 
is addressed.  
 
Any discrepancy in boresight values results in a misfit between 
the LiDAR points and the ground surface, and thus, the 
calculated coordinates of the LiDAR points are not correct 
(Toth, 2002). Ideally, the calibration parameters should stay 
constant for subsequent missions. The description of the effects 
of the different boresight misalignment angles is omitted here; 
for details see (Baltsavias, 1999). For a detailed description of 
multisensor calibration – boresight misalignment, see Toth and 
Csanyi, 2001; Toth, 2002; Pothou et al., 2007. 
 
 
3. MATHEMATICAL MODEL OF THE ALGORITHM 

Two datasets, called point clouds, P (xpi, ypi, zpi) (pi= 1,…, n) 
and Q (xqi, yqi, zqi) (qi= 1,…, m), which describe the same 
object are captured by different technologies and they must be 
transformed into a common system. Assuming that these 
datasets are connected by a 6-parameter 3D transformation, the 
three offset and three rotation parameters can be estimated, 
minimizing the distance between a point of Q dataset and a TIN 
surface patch of P surface, which is described by points of P 
dataset (Equation 1). In Figure 1, point qi (xqi, yqi, zqi) of Q 
point cloud, has to be transformed to the closest surface patch 
of the control surface P, defined by 3 points (pm, pk, pl), through 
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its projection qi΄ (xqi΄, yqi΄, zqi΄) onto the surface patch. In 
Pothou et al., 2006b, details for the algorithm were presented (it 
is called algorithm B). Also in Pothou et al., 2007, analysis and 
performance of this algorithm, for the boresight parameters 
estimation was proposed.  
 
In Equation 1, R (ω, φ, κ) is the orthogonal rotation matrix, 
defined in Equation 2, while bx, by, bz are the elements of the 
offset vector.  
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Figure 1: Transformation between qi points and control 

surface P 
 
The parameters of the plane’s equation (which passes from the 
3 known points (pm, pk, pl)), are given by the derivatives in 
Equation 3. 
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Based on Equation 3, the coordinates of qi΄ (xqi΄, yqi΄, zqi΄), 
which correspond to projection of point qi (xqi, yqi, zqi) on the 
plane (pm, pk, pl), can be calculated as described by Pothou et 
al., 2006a. In order to perform the transformation between the 
two datasets, the transformed coordinates of point qi have to be 
used in the calculation of xqi΄, yqi΄, zqi΄. So, after the input of  
Equation 1 to the equations for the calculation of  xqi΄, yqi΄, zqi΄, 
(based on that the difference of each point of dataset Q and its 
projection on the P surface should be equal to zero), the 
Equation 5 is derived in which the Τ and L are the matrices of 
Equation 4 that depend on the plane’s parameters of Equation 3. 
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Equation 5 is the observation equation for each point Q, 
therefore it is the base for producing the system of Equation 6 
which is provided through the Taylor expansion linearization 
for the parameters (bx, by, bz, ω, φ, κ). After having performed 
least squares estimation the solution of Equation 6 and the best 
estimation of the vector , is provided by Equation 7. x̂
 
 

vδxA +=δ l  (6) 
 

( ) lWδAWAAxx T1Toˆ −
+=  (7) 

 
In Equations 6 and 7, A is the design matrix, W is a diagonal 
weight matrix of the observations, xο is the vector of the 
approximated parameters, δl=l-lο is the second part of the 
observation equation in which l=0 and lο is the result of 
Equation 5 using xο, and finally v is the residual vector. 
 
Applying this algorithm for each building, which has been 
photogrammetrically restituted (P surface), the best estimation 
of the six parameters (offsets and rotations) is provided. In this 
process, photogrammetric restitution and LiDAR strips which  
both are available, the algorithm takes place, setting the 
proximity between each LiDAR point and each TIN from the 
building as a choice criterion.  
 
The corresponding covariance matrix of  and the a’ posteriori 
variance of unit weight  are calculated as following where r 
is the degree of freedom. 
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Applying the algorithm for each building, in combination with 
available LiDAR strips, a number of independent estimations of 
transformation parameters are provided. The redundancy of 
estimations provides the ability of chosen desirable number and 
type of estimations i,…, j, in order to provide a unique 
estimation of the parameters. This can be achieved if a set of 
chosen solutions is assumed as observations creating a new 
linear system of observation equations such as Equation 10.  
 
The confrontation of the solution of this system is the same as 
Equations 6 and 7. The matrix of observations l includes the 
best estimations of each solution i, …, j  which have been 
chosen from the total of the solutions.  
 

vxA += lˆ  (10)
 

The solution of Equation 10 by Equation 11 is same as that of 
Equation 7, for the case of linear equations. 
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In Equation 11, the weight matrix W is equal to  

where  includes the a’ posteriori partial covariance matrices 
of each best estimation, of each solution. 

12
o

−σ= lVW

lV

 
It should be mentioned that due to the fact that partial solutions 
are non-correlated, the best estimation of Equation 11 is 
equivalent to the corresponding estimation. This can be 
calculated from the simultaneous solution of buildings and 
LiDAR points, which have taken place in the initial solutions of 
the system 10 through Equations 6 and 7. The a’ posteriori 
standard deviation of unit weight  with the corresponding 
covariance matrices of the parameters and the observations are 
calculated based on Equations 8, 9 and 13. 
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The statistical valuation of the adjustment’s results concerns not 
only the assumptions, which have been made (initial hypothesis 
Ho) related to mathematical and statistical model of adjustment, 
but also the reliability of the observations. 
 
The general check of this hypothesis Ho is achieved by using 
the ratio 2

o
2
o σσ̂  in combination with the χ2 distribution, with r 

degree of freedom. 
 
The hypothesis Ho, according to the reliability of the 
observations, is checked based on the ratio iv̂i σ̂v̂ of each 
observation i by using the normal distribution z for a level 
meaningfulness α=0.001.  
 
The data snooping procedure led to the conclusion that 
approximately 4%-5% of the observations include outliers. The 
above results are in agreement with what have been proven in 
Pothou et al., 2007.  
 
 

4. DATA DESCRIPTION  

After implementing the proposed method, it was first tested on 
the simulated data for boresight misalignment estimation 
(Pothou et al., 2007). Next a new dataset, provided by ODOT 
(Ohio Department of Transportation) and CFM (The Center for 
Mapping, OSU) was used for intensive testing. In London, 
Madison County, Ohio, LiDAR point clouds and direct digital 
aerial images were collected in several missions over an urban 
test area. The city includes mainly residential houses and a few 
bigger buildings (such as warehouses and factories).  
 
The 55 mm focal length, DSS digital camera, with 9μm pixel 
size, was laboratory calibrated prior to the test flights. The test 
area was simultaneously surveyed by an Optech ALTM 30/70 
LiDAR system of the Ohio Department of Transportation. At 
FOV of 40o, 50 Hz scanner frequency and 70 kHz pulse rate, 
the point density was about 5-8 points/m2. A set of 16 images 
with adequate coverage of the region, which contained survey 
control points, was identified. The flight plan consisted of two 
parallel strips and two perpendicular strips. Therefore, the data 

contain 4 LiDAR strips (point cloud) and a block of 4 aerial 
images strips over the same area, each containing 4 images 
(Figure 2). For both sensors, an integrated GPS/IMU system 
provided the georeferencing. Traditional aerotriangulation was 
performed on aerial images using GCPs measured by geodetic 
means (0.1m stdv) producing the EO (Exterior Orientation). 
The bundle adjustment resulted in positioning accuracies (EO 
parameters) averaging 0.08, 0.08, and 0.10 meters in X, Y, and 
Z, respectively. The orientation accuracies average 10, 10, and 
9 arcsecs in ω, φ, κ, respectively.  
 
In the central part of the survey (also called “test field”) 24 
buildings, mainly medium sized, have been selected and 
photogrammetrically restituted (point dataset). These buildings 
(called ‘buildings-positions’) are located in the overlapping area. 
In Figure 2, an image mosaic, the selected buildings and 
LiDAR strips are illustrated. These buildings are assumed as the 
reference dataset. The area which is occupied by the selected 
group of buildings is about 300,000 m2 with a perimeter of 
2250 m.  
 
As it has been mentioned, that proposed method assumes that 
the reference dataset is derived by photogrammetric means 
(surface P) and the target dataset consists of the corresponding 
LiDAR points (surface Q) captured over the same overlapped 
area. It should be mentioned that the reference dataset can be 
derived by any other source such as by terrestrial laserscanning. 
But in this research, they were aerial photos of interest. 
 
 

  
 
Figure 2:   Highlighted buildings distributed in the area and 

LiDAR strips’ orientation 
 
 

5. EXPERIMENTS AND RESULTS 

The first part of the algorithm is an enhanced version of Pothou 
et al., 2007 method which calculates the boresight 
misalignment parameters and their standard deviation for each 
strip over each individual building. In this individual solution a 
data snooping procedure eliminates outliers before estimating 
the boresight parameters (Equation 7). The second part of the 
algorithm calculates the total solution (Equation 11) where 
combinations of buildings and strips are involved (with their 
individual weights).  
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In the first part, the results for each strip over each individual 
building point out to some learning (Figure 3). Redundancy 
(observations) can enhance the results namely buildings with 
many observations (points) give better results. Buildings with 
very small or big stdv, in their individual solutions, give 
extremely different weights from the mean stdv to the solution. 
They should be avoided from the total solution setting up a 
threshold for big and small buildings, so only the medium size 
buildings remain in the solution. The following thresholds were 
used: (LiDAR 500-2000 points) and (TINs 500-1500). 
Although the algorithm is capable of detecting these types of 
errors (σx, σy, σz), some buildings with errors have been located. 
Possible errors can originate due to the photogrammetric 
restitution (e.g. building 12). Through data snooping procedure 
LiDAR points, 4-5% outliers are removed and the parameters 
are stabilized. It is illustrated in Figures 5, 6 e.g. for angle 
omega. The boresight offset components cannot be detected 
accurately in this type of data due to high correlation of 
parameters and noise. Thus in case of a bigger offset, it could 
be detected (σx, σy, σz > bx, by, bz).  
 
In the second part, the results of the total solutions were 
analyzed, indicating that the algorithm can absorb the existence 
of at least 15% ‘problematic-out of threshold’ buildings. This 
should be considered as a restriction of this algorithm. Through 
many tests with differently distributed buildings, it can be 
concluded that positions similar to the Gruber positions, widely 
used in photogrammetry, (6-8 buildings) are the optimum 
(Figure 4). It can be noticed that the shape of buildings don’t 
affect the results. This type of distribution of the buildings has 
been actually confirmed in LiDAR boresight misalignment 
solution (Csanyi and Toth, 2007). Combinations of strips are 
necessary: at least, 2 strips flying in opposite directions are 
needed to recover the signs of the parameters. Also a 3rd strip, 
in a crossing direction, is preferred for enhancing the 
incompleteness of the parallel strips. This cross strip could 
decrease the effects of possible systematic errors which could 
arise from many sources e.g. different flying height between 
strips.  
 

 
6. CONCLUSIONS 

The feasibility of using urban areas for boresight misalignment 
has been investigated. The influence of the number and 
distribution of the necessary ‘building-positions’ on boresight’s 
misalignment parameter estimation is evaluated. Experiments 
with various number and distribution of ‘building-positions’ are 
presented, analyzed and evaluated through QA/QC statistical 
tests.  
 
Under operational circumstances, the real accurate values of the 
boresight misalignment are never accurately known and could 
only be estimated. Furthermore, boresight misalignment 
parameters could change over a relatively short time period. 
Therefore, having a mechanism to almost continuously check it 
is a valuable tool. In other words, the detection of possible 
changes in the values (in the remaining boresight misalignment) 
through a QA/QC validation process, can assure a sustained 
product’s quality. These algorithms can be considered as a good 
and fast tool for estimating parameters and detecting any 
changes. 
 
It is noticeable that this algorithm in not restricted by detailed 
restitution, as only the main skeleton of a building is needed. 
This is different from some other algorithms where, for instance, 

the availability of roof planes is a prerequisite. In this algorithm 
buildings should include points within the threshold range, and 
at least 2 strips flying in opposite directions are necessary; 
obviously a good distribution of the buildings is the necessity to 
reach an optimum. 
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Figure 3: LiDAR strips over each individual building (e.g. building 18) for the calculation of boresight parameters 
 

 
Figure 4: Angular total solution combining buildings for the calculation of boresight parameters 
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Figure 5: Angle omega per number of LiDAR points 

 
Figure 6: Sigma omega per number of LiDAR points 
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