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ABSTRACT:

The purpose of this paper is to propose new, rigorous, more robust and reliable models and methods for the calibration
and orientation of multi-sensor systems with INS/GPS data. On the one hand, the classical spatial sensor orientation
and calibration problem is reformulated as a relative control problem by transferring the relative orientation of an Inertial
Measurement Unit (IMU) between two epochs to the relative orientation of a rigidly attached sensor between the same two
epochs. This approach eliminates the need for the IMU-to-sensor relative orientation [boresight] calibration parameter. On
the other hand, a rigorous 4D —spatio-temporal— model, based on the full exploitation of the INS/GPS-derived control
data, is introduced. The paper discusses the key ideas behind both proposed approaches, presents the corresponding
mathematical models, identifies some of their advantages, and demonstrates their potential through real data.

1 INTRODUCTION

Nowadays, the use of INS/GPS time, position and attitude
(tPA) derived information as aerial control to support sen-
sor orientation and calibration is a well-established proce-
dure (Lucas, 1987, Schwarz et al., 1993). For some sensor
designs, the use of tPA aerial control is a must. For others,
it is just an option; be it for the purpose of better geometric
accuracy, for more flexible mission design or just to match
competitors’ equipment. Whatever the reason is, INS/GPS
instrumentation has become a “de facto” standard compan-
ion to the mapping sensors. This situation, in turn, has
consolidated two well-defined calibration and orientation
procedures: Direct Sensor Orientation (DSO) and the so-
called Integrated Sensor Orientation (ISO). In DSO, sensor
position and attitude literally depend on INS/GPS-derived
tPA control information. ISO does not depend from it, it
just benefits from it.

DSO is the procedure that directly provides the orienta-
tion parameters of the sensor (Schwarz et al., 1993). ISO
is the procedure that combines measurements on the map-
ping sensors’ data with whatever other available control
data in order to compute the sensor orientation parame-
ters in a block adjustment (Ackermann and Schade, 1993,
Frieß, 1991). In practice, most times, the ISO procedure
is nothing else than a traditional aerial triangulation ad-
justment with tPA aerial control and a few ground control
points. With this combination, the ISO procedure inher-
its the advantages of traditional block adjustment, reduces
ground control and relaxes mission geometric constraints.

ISO is both an orientation and calibration procedure; i.e.,
the calibration and orientation parameters are estimated si-
multaneously in the block adjustment. On the other side —
although this depends on the project and on the precision
and accuracy requirements— DSO requires a previous ISO

step to calibrate the sensors and the sensor-system (Colom-
ina, 1999).

The paper proposes new 3D models for the traditional ISO
procedure. The proposed models, more robust and reliable,
are based on the fact that the relative attitude of the sen-
sor between two epochs coincides with the relative orien-
tation of the IMU between the same two epochs (assuming
that the sensor and IMU are rigidly attached). This ratio-
nale brings us to the equations which model the orienta-
tion of the sensor in terms of the tPA aerial control without
the need of the boresight calibration matrix (Blázquez and
Colomina, 2008). Actual data are used to show the first
results and demonstrate the potential of this approach.

The classical ISO models, algorithms, methods and proce-
dures just tackle the spatial calibration aspects. However,
experience tells that incorrect or just inaccurate time syn-
chronization between sensors is a big troublemaker. While
spatial calibration is dealt both at the HW and SW levels,
temporal calibration —time synchronization— is left to the
HW. This results in reasonable robust and resilient systems
as for geometry and weak systems as for time. In other
words, current models for sensor and sensor-system cali-
bration are 3D —restricted to geometry— while the prob-
lem is a genuine 4D, spatio-temporal one (Blázquez and
Colomina, 2008).

The paper also proposes models and methods to solve the
above 4D problem. In this sense, the contribution of the pa-
per is twofold: firstly, genuine spatio-temporal orientation
and calibration models are derived and, secondly, appro-
priate observational control data (for example, INS/GPS
velocity) are identified for the precise estimation of the 4D
model parameters.

In a multi-sensor system there are two types of time er-
rors: individual sensor internal errors and system synchro-
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nization ones. In the case of individual sensor errors, the
calibration method must be based on particular mathemat-
ical models of the sensor. In the other case, even if all the
sensor oscillators are “perfect,” inaccurate time synchro-
nization between the various system sensors can spoil the
system performance and the sensor-system inconsistencies
must be modeled. It is often the case, that individual sen-
sor time drifts are dominated by external GPS receiver-
generated precise [ambiguous] time pulses and that, for
various technical and commercial reasons, inter-sensor con-
stant temporal shifts occur. The paper focuses on the mod-
eling of the sensor-system time synchronization problem.

For the estimation of the temporal calibration parameters,
the use of the full INS/GPS-derived control data is pro-
posed. In fact, INS/GPS delivers not only time, position
and attitude (tPA) but also velocity (tPVA). These veloci-
ties can be used for calibrating the time errors and for de-
correlating them from the space errors. This general prin-
ciple is valid for any multi-sensor system and, in the paper,
is formulated for the frame camera sensors.

The paper concludes by reporting on preliminary results
of actual data tests performed for concept validation pur-
poses. The results indicate that the new models make sense,
behave as expected and deliver good results.

2 AERIAL CONTROL MODELS

2.1 Classical Aerial Control Models Extensions

The classical ISO procedure optimally estimates multi-sen-
sor system parameters (unknowns) in the sense of least-
squares relating observations (measurements) with these
parameters through models. These models can be sensor
models or aerial control models. The first ones are com-
posed by the equations that model the own sensor behav-
ior (sensor observations and its own orientation and cali-
bration parameters). One example of sensor model is the
collinearity equations. The second ones are composed by
the equations which model the relation between the sen-
sor, the GPS antenna receiver, and the IMU. The improve-
ment of the classical aerial control mathematical functional
models is the focus of this research.

The classical aerial control model relates tPA aerial control
with the sensor orientation parameters, sensor-to-GPS an-
tenna receiver parameters and sensor-to-IMU parameters
for each epoch. In this paper, this model is referred to as
spatial absolute aerial control model. Based on the follow-
ing two obvious facts the classical aerial control models
can be extended:

1. The sensor calibration and orientation problem is not a
3D spatial problem, it is a 4D spatio-temporal one. More-
over, the INS/GPS-derived data contain not only positions
and attitudes, they also contain velocities.

2. If a sensor and an IMU are rigidly attached, the sensor
relative attitude between any two epochs is the same as the
IMU relative attitude between the same two epochs.

The extended model which takes into account the temporal
dimension of the sensor orientation and calibration prob-
lem is referred to as spatio-temporal absolute aerial control
model. This proposed model relates tPVA aerial control
with the sensor orientation parameters, sensor-to-GPS an-
tenna receiver parameters, sensor-to-IMU parameters, and
multi-sensor time synchronization parameter for each ep-
och.

The extended model which takes into account the orien-
tation and calibration problem for two epochs is referred
to as spatial relative aerial control model. This proposed
model relates tPA aerial control with the sensor orienta-
tion parameters, sensor-to-GPS antenna receiver parame-
ters and sensor-to-IMU parameters for two epochs.

For the sake of completeness, the extended model which
takes into account the temporal dimension of sensor orien-
tation and calibration problem for two epochs is referred
to as spatio-temporal relative aerial control model. This
proposed model relates tPVA aerial control with the sen-
sor orientation parameters, sensor-to-GPS antenna receiver
parameters, sensor-to-IMU parameters, and multi-sensor
time synchronization parameter for two epochs.

2.2 Naming and notation conventions

In the presented mathematical functional models, the in-
volved reference frames and coordinate systems are listed
in table 1.

l Cartesian local terrestrial frame (east-north-up)
b IMU instrumental frame (forward-left-up)
c camera instrumental frame
l′ Cartesian local terrestrial frame (north-east-down)
b′ IMU instrumental frame (forward-right-down)
i inertial reference frame

Table 1: Reference frames and coordinate systems.

If a variablex involves just one reference framea, it is
writtenxa. If a variable involves two reference frames, the
subscript symbol defines the “from” or “origin” (f) refer-
ence frame and the superscript symbol defines the “to” or
“destination” (t) one like inxt

f .

The observations and their residuals are denoted by low-
ercase symbols,a; the parameters are denoted by upper-
case symbols,A; and the constant values (instrumental
constant, observational auxiliary values, and constant ro-
tation matrices) are denoted by the italic typestyle,a. The
vector accent above a variable,~a, indicates that this vari-
able is a 3-dimensional vector. For the sake of simplicity,
~Xf = (x, y, z)f is used instead of the rigorous mathemat-
ical formulation ~Xf = [(x, y, z)f ]T . The observational
residuals are denoted by the symbolv with the observation
symbol as a subscript, for example,va denotes the residual
of the observationa.

The eccentricity vector~Ac=(ax, ay, az)c from the camera
projection centre to the GPS receiver antenna parameter;
the ~N c = (0 , 0 ,n)c constant vector, wheren is the cam-
era nodal distance; and theRl

l′ rotation constant matrix are
involved in all the mathematical functional models.
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2.3 Absolute Aerial Control Models

Absolute aerial control functional models (spatial absolute
aerial control models (2.3.1) and spatio-temporal absolute
aerial control models (2.3.2)) involve the following obser-
vations and their residuals: the GPS- or INS/GPS-derived
position,~xl = (x, y, z)l and the traditional [heading, pitch,
roll] Euler angles,χ = (ψ, ϑ, γ), that parameterize theRl′

b′

rotation matrix. In both absolute aerial control models, the
involved parameters are: the camera projection centre,~Xl

= (X,Y,Z)l; the traditional Euler angles,Γ = (ω, ϕ, κ),
that parameterize theRl

c rotation matrix; the GPS position-
ing errors,~Sl = (sx, sy, sz)l; and theRb

c (Υ) IMU-to-cam-
era relative orientation [boresight] calibration parameter1.
Rb′

b is a constant rotation matrix.

2.3.1 Spatial Absolute Aerial Control: The functional
models for the spatial absolute aerial control are

~xl + ~vl
x = ~Xl + Rl

c (Γ) · (~Ac + ~N c) + ~Sl, (1)

Rl
c (Γ) = Rl

l′ · Rl′

b′ (χ+ ~vχ) · Rb′

b · Rb
c (Υ) (2)

for position and attitude respectively. Note, that in the
above equation 2 for attitude control, in contrast to other
formulations, the original INS/GPS-derivedψ, ϑ, γ IMU
attitude angles can be directly used with no intermediate
reparameterization steps.

2.3.2 Spatio-temporal Absolute Aerial Control: The
functional models for the spatio-temporal absolute aerial
control are:

~xl + ~vl
x = (3)
~Xl + Rl

c (Γ) · (~Ac + ~N c) + ~Sl −
(
~vl + ~vl

v

)
· ∆t,

Rl
c (Γ) = (4)

Rl
l′ ·[Rl′

b′ (χ+ ~vχ) + Ṙl′

b′ (χ+ ~vχ)·∆t]·Rb′

b ·Rb
c (Υ) .

In equation 3, the observables are the usual GPS or INS/GPS
positions~xl and the INS/GPS linear velocities~vl2.

In equation 4, note the time derivative rotation matrixṘl′

b′

that can be computed after the relationship

Ṙl′

b′ (χ+ ~vχ) = Rl′

b′ (χ+ ~vχ) · (Ωb′

ib′ − Ωb′

il′),

whereΩb′

ib′ andΩb′

il′ are observational auxiliary matrices.
Ωb′

ib′ = Ωb′

ib′ (ωx, ωy, ωz) is an angular velocity matrix where
(ωx, ωy, ωz) are the calibrated IMU angular velocities.Ωb′

il′

= Ωb′

il′(λ, φ, λ̇, φ̇, ωe) is an angular velocity matrix which
depends on the known sensor position and on the Earth an-
gular rate3. ∆t is the multi-sensor time synchronization
parameter which is used in both absolute control models
(here) and in the spatio-temporal relative control models
(section 2.4.2).

1The boresight matrix can be parameterized in different ways. No
parameterization is specified because it is not relevant to this research.

2Note that the symbolv which denotes velocity is different from the
symbolv which denotes residuals.

3The Ωb′

ib′ matrix and theΩb′

il′ matrix are well-known and can be
found in any inertial navigation book as for example (Jekeli, 2001).

2.4 Relative Aerial Control Models

Relative aerial control functional models (spatial relative
aerial control models (2.4.1) and spatio-temporal relative
aerial control models (2.4.2)) involve the following obser-
vations and their residuals: the GPS- or INS/GPS-derived
positions at epocht2, ~xl

2 = (x2, y2, z2)l and the Euler an-
gles that parameterize theRl′

b′ rotation matrix at epocht2,
χ2 = (ψ2, ϑ2, γ2). The involved parameters are: the cam-
era projection centre at epocht1, ~Xl

1 = (X1,Y1,Z1)l; the
Euler angles that parameterize theRl

c rotation matrix at
epocht1, Γ1 = (ω1, ϕ1, κ1); the camera projection cen-
tre at epocht2, ~Xl

2 = (X2,Y2,Z2)l; and the Euler an-
gles that parameterize theRl

c rotation matrix at epocht2,
Γ2 = (ω2, ϕ2, κ2). The models of this section involve the
following observational auxiliary values: the GPS- or INS-
/GPS-derived positions at epocht1, ~x l

1 = (x1 , y1 , z1 )l and
the Euler angles that parameterize theRl′

b′ rotation matrix
at epocht1, χ1 = (ψ1 , ϑ1 , γ1 ).

In the relative aerial control models, tPA (or tPVA in the
case of spatio-temporal models) aerial control are intro-
duced as observational auxiliary data (constant informa-
tion) at epocht1 for numerical related issues.

2.4.1 Spatial Relative Aerial Control: The functional
models for the spatial relative aerial control are:

~x l
1 −

(
~xl

2 + ~vl
x2

)
= (5)

~Xl
1 − ~Xl

2 +
[
Rl

c (Γ1) − Rl
c (Γ2)

]
· (~Ac + ~N c),

Rl
c (Γ1) · Rc

l (Γ2) = (6)

Rl
l′ · Rl′

b′ (χ1 ) · Rb′

l′ (χ2 + ~vχ2) · Rl′

l .

Equations 5 and 6 are obtained from equations 1 and 2 re-
spectively by straightforward algebraic operations. Note,
that in equation 5 the positioning calibration parameter~Sl

has vanished and that in equation 6 the IMU-to-sensor bore-
sight rotation matrixRb

c (Υ) has vanished as well.

2.4.2 Spatio-temporal Relative Aerial Control: The
functional models for the spatio-temporal relative aerial
control are:

~x l
1 −

(
~xl

2 + ~vl
x2

)
= (7)

~Xl
1 − ~Xl

2 +
[
Rl

c (Γ1) − Rl
c (Γ2)

]
· (~Ac + ~N c)−[

~v l
1 −

(
~vl

2 + ~vl
v2

)]
· ∆t

Rl
c (Γ1) · Rc

l (Γ2) = (8)

Rl
l′ · [Rl′

b′ (χ1 ) + Ṙl′

b′ (χ1 ) · ∆t]·
[Rl′

b′ (χ2 + ~vχ2) + Ṙl′

b′ (χ2 + ~vχ2) · ∆t]T · Rl′

l

In equation 7, the observables are the GPS or INS/GPS po-
sitions ~x2

l and the INS/GPS linear velocities~v2
l at epoch

t2. The INS/GPS linear velocities at epocht1, ~v l
1 , are ob-

servational auxiliary values.

In equation 8, note the time derivative rotation matrices
Ṙl′

b′ that can be computed after the relationship

Ṙl′

b′ (χ1 ) = Rl′

b′ (χ1 ) · (Ω1
b′

ib′ − Ω1
b′

il′),
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Ṙl′

b′ (χ2 + ~vχ2)=Rl′

b′ (χ2 + ~vχ2)·(Ω2
b′

ib′ − Ω2
b′

il′),

whereΩ1
b′

ib′ , Ω2
b′

ib′ , Ω1
b′

il′ , andΩ2
b′

il′ are auxiliary matri-
ces. Ω1

b′

ib′ = Ωb′

ib′ (ωx1 , ωy1 , ωz1) is an angular velocity
matrix where(ωx1 , ωy1 , ωz1) are the calibrated IMU an-

gular velocities at epocht1. Ω2
b′

ib′ = Ωb′

ib′ (ωx2 , ωy2 , ωz2)
is an angular velocity matrix where(ωx2 , ωy2 , ωz2) are the

calibrated IMU angular velocities at epocht2. Ω1
b′

il′ =
Ωb′

il′(λ1 , φ1 , λ̇1 , φ̇1 , ωe) is an angular velocity matrix which
depends on the known sensor position and on the Earth an-
gular rate at epocht1. Ω2

b′

il′ = Ωb′

il′(λ2 , φ2 , λ̇2 , φ̇2 , ωe)
is an angular velocity matrix which depends on the known
sensor position and on the Earth angular rate at epocht2.

3 CONCEPT VALIDATION RESULTS

In order to analyse the overall feasibility and, somewhat,
validate the concepts introduced in the previous sections,
some of the newly formulated models were implemented
and tested with actual data against the classical spatial ab-
solute control models whose results played the reference
role. More precisely, the functional model of equation 3
was tested against the model of equation 1 (section 3.1,
“Spatial Absolute vs Spatio-temporal Absolute”) and the
functional models of equations 5, 6 were tested against
the reference models of equations 1, 2 respectively (sec-
tion 3.2, “Spatial Absolute vs Spatial Relative”). For this
purpose the “Pavia block” (provided to the Institute of Ge-
omatics by Prof. Vittorio Casella, Facoltà di Ingegneria,
Universit̀a di Pavia, Italy) was used. The configuration
characteristics of the block are summarized in table 2 and
its layout can be seen in figure 1. The Pavia block pro-
vided all necessary data for the validation purposes men-
tioned with the exception of the INS/GPS-derived linear
velocities and calibrated angular velocities that were not
available to the author at the moment of setting up the ex-
periments. To overcome this, the correct INS/GPS-derived
velocities were approximated by numerically differentiat-
ing the INS/GPS-derived positions at the image exposure
time epochs with the three-point stencil method.

Scale 1:8000
Flying height 1200 m
No. of strips 11 (7+4)
No. of images per strip ≈ 10
No. of photo-observations per image ≈ 30
No. of Ground Control Points (GCP) 8
No. of Ground Check Points (CP) 24
No. of images 131
No. of photo-observations 4167
No. of tie-points 477
Overlap ≈ 60%× 60%

Table 2: Pavia block configuration characteristics.

3.1 Spatial Absolute vs Spatio-temporal Absolute

The goal of this section is to validate whether the multi-
sensor time synchronization parameter∆t can be signifi-
cantly estimated with a sufficient precision and to provide

Figure 1: Pavia block layout.

Test Model Shift Velocity

A Spatial 1 per strip (11) -
B Spatial 1 per block -
C Spatio-temporal 1 per strip (11) ct-actual
D Spatio-temporal 1 per block ct-actual
E Spatio-temporal 1 per strip (11) non-ct

Table 3: Absolute spatial and spatio-temporal block con-
figurations.

some insight on the corresponding required block config-
urations and, eventually, mission configurations. The vali-
dation consists on the controlled determination of a signif-
icant and precise∆t that preserves or improves the quality
of the block which is measured by the point determination
accuracy at the ground check points (CPs).

As it is to be expected (equation 3), for approximately con-
stant velocities, the GPS positioning error calibration pa-
rameters~Sl —the popular GPS “shift” parameters— and
the time synchronization parameter∆t are highly corre-
lated if the classical block configurations of one “shift” per
strip are used. This is due to the constant-computed ve-
locities. Therefore, to a large extent, the concept valida-
tion problem reduces to the analysis of the conditions un-
der which, the∆t and the various~Sl can be de-correlated.
For this purpose, the data were perturbed with time syn-
chronization errors and five block/mission configurations
were analyzed as described in table 3. In the table, ct-
actual refers to the more or less constant actual velocities
and non-ct refers to the perturbed linear velocities where
the strips’ ends are flown at a different speed while taking
the first and last images. For all these configurations or
tests, the observables’ precisions at the 1-σlevel are listed
in table 4 where IC denotes photogrammeric image coor-
dinates observations, P position, A attitude and V velocity.
Note that for the PA control the sequence of observations
is (X,Y, Z, ψ, ϑ, γ).

The tests results are shown in table 5. The first column

Observable σ Units

IC (5, 5) um
GCP (5, 5, 7) cm
INS/GPS PA (5, 5, 7, 8, 5, 5) cm, mdeg
INS/GPS V (5, 5, 5) mm/s

Table 4: Observables’ precisions.
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contains the test identifier, the second one the Root-Mean-
Square (RMS) of the ground coordinate differences with
respect the check points (CP); the third one the estimated
standard deviations of the images’ exterior orientation (EO)
parameters; the fourth one the estimated standard devia-
tions of the object points (TP); and the last one the esti-
mated standard deviation of the time synchronization pa-
rameter.

CP (mm) EO (mm) TP (mm) ∆T (ms)
Test RMS σ σ σ

A (36, 27, 25) (35, 36, 32) (29, 30, 47) −
B (35, 25, 28) (35, 35, 32) (29, 30, 47) −
C (36, 27, 25) (35, 36, 32) (29, 30, 46) 2.2
D (34, 24, 27) (35, 35, 32) (29, 30, 47) 0.1
E (35, 26, 25) (35, 36, 32) (28, 30, 46) 0.2

Table 5: Absolute spatial and spatio-temporal test results.

The analysis of table 5 reveals that the systematic GPS
aerial control errors can be absorbed with just one shift
parameter (compare rows A and B) which corresponds, for
instance, to situations where the GPS reference receiver is
close to the block area. This has allowed to significantly
estimate (test D, functional model of equation 3) the∆t
parameter with just one shift parameter for the entire block
with a precision of 0.1 ms which translates to less than 1
cm in the object space. Moreover, the estimated∆t main-
tains the block quality level as proven by the correct results
at the check points. If one shift parameter per strip is in-
troduced, then the time synchronization parameter cannot
be estimated at the required precision level —2.2 ms or 18
cm in the object space— and, although the CP, EO and TP
columns show correct values, the configuration is labelled
as “non acceptable.” However, experience tells that enforc-
ing the use of just one single shift parameter per block does
not make sense in many —if not most— of cases. In or-
der to circumvent this problem, the block data were “ma-
nipulated” to simulate the case of strips flown at different
velocities at their ends while taking the first and last im-
ages (test E). In this case, the∆t parameter and 11 shift
parameters, one per strip, could be significantly and pre-
cisely estimated (σ∆T = 0.2 ms).

The presented preliminary results are encouraging and in-
dicate that if, as a result of windy weather or of simple
aircraft velocity “maneuvers,” the constant velocity limita-
tion is broken, multi-sensor time calibration as presented
in this paper is feasible. Last, note that the used velocities
were not obtained from INS/GPS data and that the obser-
vation equation 4 was not used. In other words, there is
room for further improvement.

3.2 Spatial Absolute vs Spatial Relative

The main goal of this section is to validate the aerial rel-
ative control models of equations 5 and 6. The valida-
tion consists on the comparative analysis of a standard ISO
block configuration with absolute spatial aerial control and
a new one with relative control via the RMS of coordinate
differences at check points. For this purpose, the Pavia
block was used again. The observations’ precisions are de-
scribed in table 6 which is largely self-explanatory.

Observable σ Units

IC (5, 5) um
GCP (8, 8, 10) cm
INS/GPS Abs PA (7, 7, 11, 8, 5, 5) cm, mdeg
INS/GPS Rel PA (4, 4, 8, 2.7, 2.7, 2.7) cm, mdeg

Table 6: Observables’ precisions.

CP (mm) EO (mm,mdeg) TP (mm)
Test RMS σ σ

Abs (35, 27, 26) (39, 40, 35, 1.3, 1.3, 0.8) (32, 33, 49)
Rel (33, 26, 27) (39, 42, 46, 1.4, 1.2, 0.8) (35, 36, 58)

Table 7: Absolute vs relative aerial control test results.

One of the advantages of the INS/GPS relative control is
its high short term precision. Accordingly, the INS/GPS
relative control precisions have been [conservatively] set
to values consistent with the photogrammetric base and the
IMU used in the Pavia block (row ’INS/GPS Rel PA’ of
table 6).

The results are shown in table 7. The first column con-
tains the test configuration (Abs and Rel refer to the spatial
aerial absolute and relative control models respectively);
the rest of the columns are similar to those in table 5. On
the one hand, the results confirm that ISO can be performed
without shift and boresight calibration parameters at the
price of larger estimated standard deviations in the height
components of ground points (20% worse) and projection
centers (30% worse). This is thought to be due to the less
favorable error propagation —a somewhat weaker geom-
etry or blockBierbaucheffect— of relative control. The
predicted errors notwithstanding, the results at the ground
check points are even [insignificantly] better with relative
aerial control. In the author’s opinion, these are remark-
able results. Indeed, for everyday practical use, the relative
control formulation is simpler and less error prone than the
absolute one.

Another potential expected advantage of the relative aerial
control models is the mitigation of undetected GPS cycle
slips effects. For this purpose, the INS/GPS-derived posi-
tions of half a central strip were largely perturbed with 50
cm shifts. Figures 2 and 3 show the coordinate differences
at check points with the absolute and relative aerial control
models respectively. As it can be seen, the relative aerial
control models are less sensitive than the absolute aerial
control models.

Moreover, the performance of the absolute aerial control
models and the relative aerial control models after removed
the gross-errors (detected with automated data-snooping)
is shown in the table 8. The columns of this table are the
same as the columns of the table 7. Again, the RMS of the
coordinate differences at check points indicate that the rel-
ative control models behave better than the absolute ones.

CP (mm) EO (mm,mdeg) TP (mm)
Test RMS σ σ

Abs (41, 42, 29) (40, 41, 36, 1.3, 1.3, 0.8) (33, 34, 50)
Rel (33, 26, 27) (39, 42, 46, 1.4, 1.3, 0.8) (35, 36, 58)

Table 8: Absolute vs Relative aerial control test results.
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Figure 2: Absolute-estimated coordinate differences at
check points of perturbed data test.

Figure 3: Relative-estimated coordinate differences at
check points of perturbed data test.

These preliminary results suggest that the relative control
models are more robust and reliable than the absolute aerial
control model in front of undetected GPS cycle slips even
if the gross-errors are removed from the data.

4 CONCLUSIONS AND FURTHER RESEARCH

This paper has introduced new mathematical functional mo-
dels (equations 2, 3, 4, 5, 6, 7 and 8) for the spatial and
spatio-temporal modeling of the GPS- and INS/GPS-der-
ived aerial control data. Using actual data and perturbed
actual data, the essential subset of the new functional mod-
els (equations 3, 4, 5 and 6) have undergone a succesful
preliminary, proof-of-the-concept testing.

In the case of spatial relative aerial control models (equa-
tions 5 and 6), the expected advantages have been demon-
strated with the first results using actual data. The spatial
relative aerial control models eliminates the IMU-to-sensor
relative orientation matrix and the GPS positioning error
parameters without loss of accuracy and with a moderate
loss of precision. Moreover, this model seems to mitigate
the effects of undetected GPS cycle slips “better” —in the
sense of reliability and robustness— than the spatial abso-
lute aerial control models.

In the case of spatio-temporal absolute aerial control mod-
els (equations 3 and 4), the expected advantages are being
tested with actual and perturbed data. The first results in-

dicate that the time synchronization parameter can be es-
timated at the tenth of a milisecond precision level. New
block configurations have been identified in order to esti-
mate the multi-sensor time synchronization and the GPS
positioning error parameters simultaneously.

The spatio-temporal relative aerial control models are not
yet implemented. But, the results of the spatio-temporal
absolute aerial control models and spatial relative aerial
control models indicate that this approach could be even
more reliable and robust, if a few consecutive images could
be taken at different velocities. This implementation is
planned together with the use of actual data to demonstrate
the potential of the temporal calibration models.
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