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ABSTRACT:

In classical photogrammetry, point observations are manually determined by an operator for performing the bundle adjustment of a
sequence of images. In such cases, a comparison of different estimates is usually carried out with respect to the estimated 3D object
points. Today, a broad range of automatic methods are available for extracting and matching point features across images, even in
the case of widely separated views and under strong deformations. This allows for fully automatic solutions to the relative orientation
problem, and even to the bundle triangulation in case that manually measured control points are available. However, such systems
often contain random subprocedures like RANSAC for eliminating wrong correspondences, yielding different 3D points but hopefully
similar orientation parameters. This causes two problems for the evaluation: First, the randomness of the algorithm has an influence on
its stability, and second, we are constrained to compare the orientation parameters instead of the 3D points. We propose a method for
benchmarking automatic bundle adjustments which takes these constraints into account and uses the orientation parameters directly.
Given sets of corresponding orientation parameters, we require our benchmark test to address their consistency of the form deviation
and the internal precision and their precision level related to the precision of a reference data set. Besides comparing different bundle
adjustment methods, the approach may be used to safely evaluate effects of feature operators, matching strategies, control parameters
and other design decisions for a particular method. The goal of this paper is to derive appropriate measures to cover these aspects,
describe a coherent benchmarking scheme and show the feasibility of the approach using real data.

1 INTRODUCTION

1.1 Motivation

Automatic bundle adjustment is a widely used tool for photogram-
metric applications. A lot of work has been done on different bun-
dle parametrizations, error models, on linearization, robustifica-
tion methods and optimization strategies. An excellent overview
is given in Triggs et al. (2000). Both proprietary and open source
(Lourakis and Argyros, 2004) bundle adjustment implementa-
tions are available. In the last years, a growing number of feature
detectors and descriptors have been proposed which allow for au-
tomatic matching under widely separated views and a consider-
able degree of distortions, allowing us to compute the relative
orientation of image sequences fully automatically. The question
arises how to verify, and especially how to benchmark such auto-
matic bundle adjustment methods in a statistically sound manner.
It would be desirable to compare the precision of such systems
under varying conditions and against each other.

Benchmark tests are usually carried out by processing datasets
with ground truth. In fact though, reliable ground truth data for
camera orientations is only available when using artificially ren-
dered images to our knowledge. In a real scenario, it is very dif-
ficult to measure camera orientations with an accuracy which is
clearly superior to the expected bundle adjustment. Validation
of course needs to take into account both uncertainties, that of
the test data set and that of the reference data set. Furthermore,
the use of data from external sensors like IMU’s lacks a proper
theoretical model for the evaluation.

The classical error model for bundle adjustment is the squared re-
projection error of observed homologous points, in case of homo-
geneous precision actually realizing a Maximum-Likelihood esti-
mate. As stated above however, automatic systems often contain

random components for filtering the correspondences and hence
yield different 3D points, disqualifying the points as a basis for
the evaluation. Our aim is thus to directly use the different esti-
mates of camera orientations as a foundation for the evaluation.

1.2 Problem statement

Our goal is to develop measures suitable for a benchmark test
of automatic bundle adjustments based on the estimated frames
and their theoretical covariance matrices. With frame we denote
the parameters of the exterior orientation of a camera, following
Pennec and Thirion (1995). For corresponding sets of frames,
we want to evaluate (1) the consistency c of the form deviation
and the internal precision and (2) the precision level p w. r. t. the
precision of a reference data set. Both measures should be related
to a metric in order to be able to rank different methods.

We are primarily interested in comparing corresponding sets of
frames estimated by different methods. If one dataset can be
used as a reference with clearly superior precision, the remain-
ing datasets may be benchmarked by computing consistency and
precision level with respect to the reference for each of them.

Furthermore, if a particular method uses a random subprocedure
such as RANSAC, it may be meaningful to compare repeated es-
timates of this method in order to evaluate the repeatability of the
results. We will thus present suitable measures for comparing re-
sults from different methods as well as results from repeated runs
of the same method.

1.3 Outline of the paper

We will give a brief summary on the state of the art of auto-
matic bundle adjustment methods and benchmark tests in section
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2. Section 3 gives an overview of the proposed benchmarking
scheme, starting with a formalization of the problem and intro-
ducing the respective metrics. In section 4, we will detail the pa-
rameter transformations necessary for computing these metrics.
The exact approaches for computing the consistency and preci-
sion measures are described in sections 5 and 6, respectively. We
show the feasibility of the proposed approach with an experiment
based on real data in section 7 and conclude with a short summary
and outlook.

2 RELATED WORK

Fully automatic solutions to the relative orientation problem are
available since several years. The algorithms are based on auto-
matic correspondence detection techniques, ranging from simple
correlation-based methods to rotation and scale invariant (Lowe,
2004) or even fully affine invariant solutions (Mikolajczyk and
Schmid, 2004; Matas et al., 2004). Schaffalitzky and Zisserman
(2002) were probably the first to automatically find overlapping
pairs in unordered image sets under widely separated views. They
use affine invariant feature descriptors for finding corresponding
points in image pairs. Another solution has been proposed early
by Martinec and Pajdla (2002) who make use of “tracks” to in-
crease the amount of feature correspondences.

Pollefeys et al. (2000) started early to compute 3D structure from
uncalibrated image sequences and were probably the first to im-
plement a fully automatic approach to the relative orientation
problem. Mayer (2005) has implemented an automatic system
for the precise estimation of relative orientations from an im-
age sequence for acquiring 3D building models. The system
matches interest points (Förstner and Gülch, 1987) across images
and performs adjustments of intermediate results whenever pos-
sible. Roth (2004) describes a fully automatic solution to the
relative orientation problem for the uncalibrated case using SIFT
features (Lowe, 2004) for automatic correspondence detection.
He evaluates his implementation based on the reprojection errors
of object points on a typical image sequence. Läbe and Förstner
(2006) proposed another solution based on SIFT features, which
uses calibrated cameras.

Lourakis and Argyros (2005) benchmarked different bundle ad-
justment implementations based on reprojections errors, using
datasets with ground truth observations. Their aim was to com-
pare different optimization strategies for the adjustment. Our goal
is to deploy a method that works in the absence of ground truth
and without the need for common object points, which makes the
task a challenging problem. Pennec and Thirion (1995) addressed
a similar problem and proposed means for dealing with frame-to-
frame correspondences using an Extended Kalman Filter. They
argue that errors in estimation problems of rigid transforms are
not sufficiently modeled, as often applied, by an additive bias.
This is due to the fact that the addition of transforms is not gener-
ally defined. Instead, they state that errors should be represented
as transformations. We agree with this statement and follow a
similar approach here, but aim at a closed solution for all frames
instead of a recursive scheme.

Comparing the result of free networks is confronted with the
gauge or datum problem: Only parameters and covariance ma-
trices can be compared which refer to the same coordinate sys-
tem. This problem has been identified and solved for sets of 2-
and 3-D points by Baarda (1967) using S-Transformations, rep-
resenting a differential similarity transformation into a well de-
fined coordinate system. The concept has been generalized for
point sets in arbitrary orientation by Molenaar (1981), using a
K-Transformation as a preprocessing step which guarantees the

S-Transformation to be close to a unit transformation. Transfer-
ring the concept of K- and S-transformations to sets of frames
with six degrees of freedom is not worked out to our knowledge
and marks the core of this paper.

Besides the mentioned gauge or datum problem, one has to cope
with the specification of a reference covariance matrix when eval-
uating the precision of parameters. This problem has not been
tackled in depth for sets of frames, as it has been for sets of points
using covariance functions. However, we can generally deter-
mine a reference covariance matrix by specifying a measurement
design and then using the resulting theoretical covariance matrix.
This is the way we want to follow.

3 OVERVIEW OF THE APPROACH

3.1 Problem formalization

Input data For our discussion, we first assume that two corre-
sponding sets of N estimated frames are given by their parame-
ters and their joint covariance matrices:

{ad1,
aΣd1d1} { bd2,

bΣd2d2} (1)

We use right subscripts to number the datasets, and left super-
scripts to denote the coordinate system in which the parameters
are given. The complete vectors consist of N subvectors each,
where N is the number of cameras:

ad1 =

26664
ad11
ad12

...
ad1N

37775 and bd2 =

26664
bd21
bd22

...
bd2N

37775 . (2)

The representation of the frame has to capture both translation
and rotation. In our context, each frame din is a 7-dimensional
vector consisting of the camera’s projection center xin and the
camera’s rotation represented by a unit quaternion qin:

din =

»
xin
qin

–
=

24 xin
qin
~qin

35 i = {1, 2} (3)

We consider aΣd1d1 and bΣd2d2 , which represent the uncer-
tainty of the N frames, to be two full 7N × 7N covariance ma-
trices. In general they may have a rank deficiency, due to the nor-
malization of the quaternions and possibly due to the definition of
the gauge or datum, e. g. by fixing one frame and the coordinate
difference to another frame.

Consistency of corresponding datasets Consistency in our con-
text means form deviation of two sets of corresponding frames
related to the internal precision. It should be based on the av-
erage deviation of corresponding camera parameters and will be
denoted by the symbol c. We require c to take small values for
small form deviations, and vice versa. A straightforward basis is
the Mahalanobis distance

Ω = (sd1 − sd2)(sΣd1d1 + sΣd2d2)−1(sd1 − sd2)T (4)

which together with the redundancy R = 6N − 7 yields

c =

r
Ω

R
. (5)

c is F-distributed withR and∞ degrees of freedom in case the in-
ternal covariances are correct. It holds for uncorrelated datasets
given in the same coordinate system s. In section 5.1, we will
give two theoretically equivalent derivations of c based on (4).
The transformation of corresponding sets of frames into a com-
mon coordinate system s is explained in section 4.
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Precision level of corresponding datasets When computing
c, we assume the bundle adjustment procedures to know their
own precision level, i. e. Σdidi . Thus we are left with comparing
their precision levels if they show consistency. We identify the
difference in precision level p of corresponding datasets with the
average ratio of their standard deviations:

p = p (sΣd1d1 ,
sΣd2d2) (6)

The precision level p should be related to a metric of the covari-
ance matrices involved. Again we require this quantity to take
small values for small differences in precision level, and vice
versa. Clearly, such a direct comparison of covariance matrices
is only possible if the datasets share the same gauge and coordi-
nate system, say s. The main part thus consists in making the K-
and S-transformation according to Baarda (1967) and Molenaar
(1981) explicit for our specific problem. These transformations
are derived for sets of frames, not only for sets of points in sec-
tion 4.

3.2 Evaluating methods containing random subprocedures

If the automatic orientation procedure that we want to evaluate
has a random component, we can only trust the benchmark met-
rics if repeatability of the results is ensured for the same input
data. Then we need to evaluate the consistency of repeated es-
timates from the same method, i. e. the consistency of multiple
datasets { adk, aΣdkdk} or { bdk, bΣdkdk}, 2 ≤ k ≤ K. More
precisely, we want to address the variation of these repeated esti-
mates related to their average internal precision. We will derive a
particular consistency measure cs for such sets of samples in sec-
tion 5.2, and accept only datasets where cs is below a threshold
Tcs .

Besides consistency, one may be interested in evaluating the vari-
ation of the precision level over repeated estimates, i. e. based on
the variation of p. In our experiments it turned out that the pre-
cision level undergoes very small variations only, hence we will
not give any detailed results in this paper. It should though be
noted that a derivation may be useful when investigating proce-
dures with very pronounced random components.

3.3 Comparing different bundle adjustment methods

When comparing different methods, we assume that the dataset
{ ad1,

aΣd1d1} serves as a reference with clearly superior pre-
cision. We may then compute c and p w. r. t. this reference for
a second dataset { bd2,

bΣd2d2}. Repeating this procedure for
datasets from different methods but using the same reference, we
end up with multiple pairs of measures (ci, pi). As ci indicates
consistency regarding the internal precision of a dataset, we re-
quire it not to exceed a threshold Tc in order for pi to give mean-
ingful evidence.

3.4 Benchmarking scheme

We come up with the following scheme for benchmarking auto-
matic bundle adjustment methods, given a set of images:

1. Provide a reference dataset with clearly superior precision,
i. e. by using a very large image resolution.

2. For every method m which contains a random subproce-
dure, compute its consistency csm for a larger number of
repeated estimates. Accept m for the benchmark test only if
csm < Tcs , as described in section 5.2.

1

2

3

4

1
2

3

4

a
b

Figure 1: Birdseye view of an exemplary initial situation: Two
sets of frames, left in reference system a, right in reference sys-
tem b, represented by numbered tripods. The sets are approxi-
mately related by a spatial similarity transformation. The uncer-
tainties of each camera, denoted as ellipses, as well as the gauge
and origin may differ arbitrarily.

3. For every method i qualified for the test, compute ci and ri
w. r. t. the reference dataset, as described in sections 5.1 and
6.

4. Report ci and pi for all methods with ci < Tc.

4 TRANSFORMATION OF THE PARAMETERS

4.1 The K Transformation

The K-Transformation in our context is a similarity transforma-
tion between two sets of corresponding frames to accomplish ap-
proximate coverage in the same coordinate system. Consider the
two sets of frames in (1). They generally differ by an unknown
spatial similarity transformation K(tK ,qK , λK), where tK is a
translation between the projection centers, qK is a 3D rotation
in quaternion representation, and λK a scale factor. A sketch of
such two parameter sets from a birdseye view is given in Figure 1.
In the absence of any errors we expect

ad1n =

»
ax1n
aq1n

–
=

»
λK · R(qK) bx2n + tK

qK
bq2n

–
(7)

We assume the similarity transformation K to be non-stochastic,
therefore any method can be used to determine the parameters
from a few or from all frames.1 Applying K on bd2 will bring
the two sets of frames to approximate coverage in the coordinate
system a, while the gauge however may still differ arbitrarily:

ad2n = K ◦ bd2n (8)

We now need to update the covariance matrix bΣd2d2 . As the
quaternion multiplication q1q2 is bilinear, we may write

q1q2 = M (q1) q2 (9)

with M(q1) = ∂(q1q2)/∂q2. This enables us to convert (7) to»
ax1n
aq1n

–
=

»
λKR(qK) 03×4

04×3 M(qK)

–
| {z }

JKn

·
»

bx2n
bq2n

–
+

»
tK
0

–

(10)
and use the 7N × 7N block diagonal matrix JK = [JKn ] to get

aΣd2d2 = JK · bΣd2d2 · J
T
K (11)

1Given at least two frames, we can compute a spatial similarity trans-
formation by taking the translation from the two projection centers, the
rotation from the two quaternions and the scale from the difference of two
coordinates, for example. It should though be noted that direct solutions
may lead to clearly non-optimal estimates, especially when the stochastic
structure coded in the covariance matrices is complex and contains strong
correlations between the cameras.
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4.2 The S-transformation

In our context, the S-transformation is a differential non-stochastic
similarity transformation of the datasets ad1 and ad2 into a pre-
specified coordinate system s, derived as a linearized formula-
tion of the remaining spatial similarity transformation including
the rotation parameters. To obtain a linearized model, we may
parametrize the rotational parts of this transformation with three
parameters representing small angles, which is admissible due to
the preceding K-transformation. For each frame n, we thus have

sdin = ∆S ◦ adin i = {1, 2} (12)

where ∆S(∆t,∆ω,∆λ) is the designated transformation ap-
plied to the K-transformed data, and sd1n and sd2n are given
parameters. We use a full 7N × 7 Jacobian, given as the block
diagonal matrix

A = [An], An =

»
I3 −S(ax2n) ax2n

04×3 A∆ωn 04×1

–
(13)

where

A∆ωn =

»
− 1

2
a~qT

2n
1
2

[aq2nI3 − S(a~q2n)]

–
(14)

with aq2n = [ aq2n
a~qT

2n ]T and S(x) the skew-symmetric
matrix of a 3D vector x. A weight matrix W s captures the weight
of each element in the complete parameter sets to encode which
of the prespecified frames are used for determining the transfor-
mation. This enables us to finally define the S-Matrix

sS = I − A(ATW sA)−1ATW s (15)

and obtain the S-transformation for both datasets i = {1, 2}
sdi = sS adi

sΣdidi = sS aΣdidi

sST . (16)

The result of the S-transformation is indicated with a left super-
script s.

5 CONSISTENCY BETWEEN SETS OF FRAMES

5.1 Consistency between two corresponding datasets from
different methods

After applying the S-transformation, the corresponding sets of
orientation parameters are given in a common coordinate system
and gauge. We can therefore directly compute c as introduced in
eq. (4) and (5) by inserting the parameters resulting from (16). c
is easy to interpret: It is expected to be one on average in case that
the form deviation of the two datasets matches their internal pre-
cision, and its square is F6N−7,∞-distributed. As desired, higher
form deviations yield higher values for c, indicating a lower con-
sistency, and vice versa. We propose to discard datasets where c
is clearly larger than 1, i. e. by using a threshold Tc. This thresh-
old should be

p
Fα,R,∞ with α a small percentage, i. e. 0.001

in case the different data sets are statistically independent. Usu-
ally the stochastic component of an algorithm does not lead to a
statistically independent solution, e. g. RANSAC only randomly
selects observations out of a given fixed set.

Pennec and Thirion (1995) state that the error model for esti-
mating rigid transforms should be a transformation itself. Trans-
ferring this concept to our particular problem, we may consider
the two sets of frames introduced in (1) as consistent if they do
not differ significantly by a similarity transformation. More pre-
cisely, in case of perfect consistency we may expect

E

„»
ax1n
aq1n

–«
=

»
λR(q)E

`
bx2n

´
+ t

qE
`
bq2n

´ –
(17)

with observations l =
˘
ax1n,

aq1n,
bx2n,

bq2n

¯
, unknowns

λ, q and t and constraints on the length of the quaternion. Using
this as an error model, we get as an alternative formulation of (5)

c =

sbvTΣ−1
ll bv
R

(18)

with corrections bv for the observations l. Eq. (18) is equivalent
to estimating a small transformation S from the parameters after
the K-Transformation, with contradictions av1 and av2 due to
the remaining geometric differences:

(ad1 + av1)− S ◦ (ad2 + av2) = 0 (19)

Due to the differential parameters, we can simplify (19) using the
Jacobian introduced in (13) and get»

ax1n − ax2n
aq1n − aq2n

–
| {z }

dln

+

»
avx1n − avx2n
avq1n − avq2n

–
| {z }bvn

= An

24 dt
dr
dλ

35
| {z }

d bxn

(20)
Note that while the rotational parts of the frames are represented
as quaternions, the rotational part dr of the transformation is a 3-
parameter representation in small angles. This allows us to solve
the Gauss-Helmert-model without additional constraints on the
unknowns. With

S = I − A(ATΣllA)−1ATΣll (21)

we obtain the negative residuals−bv = dl−A·dbx = Sl. Compar-
ing (21) and (15), we see that the S-transformation can obviously
be interpreted as determining the negative residuals of a differen-
tial similarity transformation. The difference between S and sS
is the weight matrix, which here is based on the inverse of the
covariance matrix Σll = aΣd1d1 + aΣd2d2 .

Observe that Σll may have a rank deficiency, due to the unknown
length of the quaternions and possibly due to the gauge of the
sets of cameras. We therefore need to enforce regularity in Σll
without affecting the result. To overcome singularities caused by
the gauges, we add the term AAT which according to Rao (1967)
exhibits the desired properties. Furthermore we account for the
missing constraints on the length of the quaternions by adding
HHT with H = null(Σll) in case the quaternions are normalized
to 1. H can be given explicitly as the block diagonal matrix

H = [Hn], Hn =

»
03×1
aq2n

–
, (22)

thus we actually use Σ ′ll = Σll + HHT + AAT in (21).

5.2 Consistency between repeated estimates of a stochastic
method containing a random subprocedure

For evaluating the consistency of repeated estimates from a method
containing random components, it is reasonable to compare the
variation of the estimated parameter vectors with the average in-
ternal precision, given by the covariance matrices. We assume
the repeated estimates to be uncorrelated, otherwise the follow-
ing derivation yields only an approximate measure.

The parameter variation is given by the empirical standard devia-
tion of the projection centers and the quaternions. With the mean
values xn and qn computed across all samples K, we get with
N the number of cameras

bε2x =
1

3K(N − 1)

KX
k=1

NX
n=1

|sxkn − xn|2 (23)

bε2q =
1

3K(N − 1)

KX
k=1

NX
n=1

|sqkn − qn|
2 (24)

10
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Furthermore we compute the average theoretical standard devia-
tions from the covariance matrices sΣdkdk as

σ2
x =

1

3NK

KX
k=1

NX
n=1

σ2
xkn

+ σ2
ykn

+ σ2
zkn

(25)

σ2
q =

1

3NK

KX
k=1

NX
n=1

3X
i=0

σ2
qi,kn

(26)

The consistency of K samples is then derived as the mean ratio

c2s =
1

2

„ bε2x
σ2
x

+
bε2q
σ2
q

«
(27)

Again we assume the samples to be uncorrelated here, and require
cs to be lower than Tcs =

p
Fα,6K(N−1),∞.

An alternative formulation of cs may be directly derived from the
consistency measure c introduced in section 5.1 by computing c
for each pair of the samples and then measure the variation of
these values. This should yield a comparable quantity.

6 PRECISION LEVEL BETWEEN DATASETS

Given two corresponding datasets, each of them with a valid con-
sistency computed w. r. t. the same reference dataset, we finally
finish the benchmark test by comparing their difference in pre-
cision level w. r. t. the reference dataset. Our aim is to use the
ratio of standard deviations aσf and bσf of arbitrary functions
f(d) of the two sets of frames, once calculated with aΣd1d1 and
once calculated with bΣd2d2 . The ratios can be computed after a
transformation into the same coordinate system s, so we choose
the parameters resulting from (16) again and determine the gen-
eralized eigenvalues r2 from | sΣd1d1 − r2 sΣd2d2 | = 0. The
maximum ratio of the standard deviations of an arbitrary function
f of the parameters then is bounded (Baarda, 1967):

σ
sΣd1d1
f(d)

σ
sΣd2d2
f(d)

≤ rmax = max
i
ri (28)

As a measure for the precision level p, it would at first be reason-
able to choose

p′ = r =

Pm
i=1 ri

m
or p′′ = eln r = m

sY
i

ri (29)

In fact though, (29) makes no distinction on the shape of the
compared error ellipsoids, and may indicate similarity between
clearly flat ellipsoids and a unit sphere. Following Förstner and
Moonen (1999), the distance of the two covariance matrices can
be defined as

d2 =

Pm
i=1 ln2 ri

n
= ln r2 ≥ 0 (30)

It can be shown that d is a metric when comparing two covariance
matrices (Förstner and Moonen, 1999). It is the mean quadratic
deviation of ri from 1, using the deviation li = ln ri from 0.
However we want to know the average quadratic deviation of the
ratio ri from 1, which is ed, yielding the precision level

p := e
√

ln r2 ≥ 1 . (31)

It can be seen that the ratios ri and 1/ri of standard deviations are
weighted as equally deviating from ratio 1 if we use the logarithm
before averaging. The precision level p = 1 is only reached in
case the covariance matrices are equal, otherwise p > 1, e. g. p =
1.05 meaning the standard deviations calculated with Σ2 on av-
erage deviate by 5% from those calculated with Σ1. The for-
mulation compares to the one given in (29) by a factor 2 in the
exponent.

Figure 2: Image sequence used for the experiment

Pyramid Level #Object points c p
0 15565 0.0 ./.
1 12914 1.1 1.3
2 1250 1.2 14.3
3 384 1.7 66.5

Table 1: Four different results of our own software AURELO com-
puted on different pyramid levels of the images in Figure 2.

7 EXPERIMENTAL RESULTS

The proposed approach can be used for different tasks: (1) com-
paring two methods, (2) comparing different versions of the same
method, e. g. when changing control parameters and (3) compar-
ing different results of an algorithm with a stochastic component.
We present an experiment with our own software AURELO (Läbe
and Förstner, 2006) to show the feasibility for evaluating the ef-
fect of image resolution on the quality of the results. An elaborate
application of our benchmarking scheme for quality analysis can
be found in Läbe et al. (2008).

The image sequence used is depicted in Figure 2. We present four
series of estimates based on this sequence but using different im-
age resolutions. The first series was computed on the original
resolution (3008× 2000) and will be used as a reference dataset.
The three other series were computed on increasing pyramid lev-
els, each level scaled down by a factor of two w. r. t. the previous
one.

As our software uses a RANSAC scheme, we computed 10 re-
peated estimates with constant parameter settings for each series.
For the second pyramid level, we obtained bεx = 7.67 · 10−6,bεq = 8.1 · 10−4, σx = 4.8 · 10−5 and σq = 0.006. Thus
the consistency of the repeated estimates cs is 0.1467, which is
clearly smaller than the threshold Tcs . We obtained similar re-
sults for the other series and thus reason that the datasets can be
used for further evaluation.

The next step is the computation of the consistency c w. r. t. the
reference dataset for each of the other series. If the theoretical co-
variance matrices computed by AURELO reflect the true accuracy
situation related to the form similarity of estimated frames, we
should obtain values not significantly deviating from 1. The re-
sults in Table 1 show that this is clearly true for the first pyramid
levels. The smallest image resolution however yields c = 1.7,
indicating that the software looses reliability on very small image
resolutions. This either may be caused by a too optimistic covari-
ance matrix for the observations or by outliers not detected by the
algorithm. Regarding the proposed threshold Tc we can conclude
that the consistency is satisfying for pyramid levels 1 and 2 and
at least acceptable for pyramid level 3.
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The final step consists of comparing the precision levels of the
datasets, i. e. using p computed w. r. t. the reference to identify
the most favorable estimate. As the number of pixels decreases
by four and the accuracy of observed points by two on average,
we expect the precision to decrease approximately by

√
4 · 2 =

4 between successive pyramid levels. Indeed this factor can be
observed in Table 1: While the first pyramid level yields p = 1.3,
thus better than 4 as expected, the successive series yield values
close to 16 and 64, respectively. The particularly good behavior
of pyramid level one has been observed in many of our previous
experiments. Hence altogether the proposed benchmark test not
only identified the expected winner, but also yielded measures
that we are able to explain by design of the datasets.

8 CONCLUSION AND REMARKS

We defined statistically sound measures for comparing correspond-
ing sets of orientation parameters estimated by automatic bundle
adjustment procedures. They can be used to compare different
methods, the same method with different control parameters and
- if required - multiple samples of stochastic methods for bundle
adjustment. The measures are computed after a transformation of
the parameters into a well defined coordinate system, using the
concept of K- and S-transformations that we made explicit for
sets of camera frames.

The proposed measures are based on the consistency of the form
deviation of corresponding camera frames with their theoretical
precision as well as on the difference in precision level related
to a reference dataset. We proposed a complete benchmarking
scheme that addresses both aspects and also considers consis-
tency of stochastic methods with random components over re-
peated estimates. It has been successfully applied to evaluate re-
sults from our own software and yielded meaningful results.

There are still some problems that we want to address. Using a
simple direct solution for the K-transformation may sometimes
yield really poor approximate values. Furthermore, numerical
issues play an important role if the theoretical precision is very
high. We are examining ways of conditioning the datasets to gain
more reliable results with difficult input data. Finally, it may be
meaningful to derive a consistency measure similar to cs for eval-
uating the variation in precision level of repeated estimates when
testing rather unstable bundle adjustment methods with very pro-
nounced random components.

Benchmarking of bundle adjustment procedures of course needs
to address other issues, such as computation time, the ability for
selfdiagnosis w. r. t. systematic errors or the ease of including
other information, such as external observations, e. g. GPS, into
the estimations, which is out of the scope of the paper.
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Läbe, T. and Förstner, W., 2006. Automatic relative orientation
of images. In: Proceedings of the 5th Turkish-German Joint
Geodetic Days, Berlin.
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