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ABSTRACT:

This paper examines and describes improvements of the processing time of an airborne wide area monitoring system which is under
development at the German Aerospace Center (DLR). Aboard the aircraft a computer network equipped with three off-the-shelf cameras
acquires images at intervals of up to 3fps. After orthorectification a traffic processor runs an automatic road traffic-data extraction and
sends its result to a receiving ground station via an S-Band radio link. The processed results must be available as fast as possible.
Hence, processing times of the computationally intensive tasks are meassured. In this context it turned out to consider not only the pure
processing times but also the copy operations of the images between the modules. We compare several interprocess communication
mechanisms and discuss the results. With the usage of relatively simple shared memory concepts a significant speed-up can be reached.

1 INTRODUCTION

During mass events or natural disasters security authorities and
emergency services are dependent on precise and up-to-date in-
formation about the operational area. Since under such extreme
conditions the scenario can change completely every couple of
minutes the current traffic situation and the condition of motor-
ways are of special interest. The command centers demand for
both a detailed and an up-to-date overview of the area. However,
stationary sensors like inductive loops, radar sensors or terres-
trial traffic cameras have a poor spatail resolution whereas street
maps have a low temporal resolution, i.e. they might be sim-
ply out of date. Moreover in cases of natural disaster a traffic
monitoring system should not only depend on an intact infrastruc-
ture. Therefore the German Aerospace Center (DLR) develops an
airborne wide-area monitoring system, which is able to transmit
high-resolution optical images and traffic data of the affected area
in near real time to the ground. This system is mounted aboard
an airplane and consists of the DLR 3K-camera system (Kurz et
al., 2007), a processing rack and a slave tracking antenna. The
automatic onboard analysis including orhtorectification, georef-
erencing and road-traffic data extraction demand high standards
to the onboard hardware/software system. Three cameras pro-
duce images at a data rate of up to 54 MB/s. To cope with this
large data rate each camera is dedicated to one computer. After
orthorectification the images are forwarded to the vehicle detec-
tion and tracking processor (Rosenbaum et al., 2008), which runs
on a fourth computer. Those two processes are computationally
intensive tasks and should be responsible for the lion’s share of
the processing time. Nevertheless all steps in the processing chain
perform read and write operations, copy the data into main mem-
ory or send it via Ethernet to another host, which sums up to a
considerable amount of the processing time. Therefore this paper
investigates the processing chain and tries to reveal bottle necks
and data congestions in order to optimize the overall processing
time. The faster it is the more data can be sent early enough to
the user on the ground.

At first the processing system is described in chapter 2. The fo-
cus of chapter 3 lies on the data exchange between processes. Its
methods and its influence on performance are examined in chap-
ter 4. Chapter 5 gives an outlook on further improvements.

2 ONBOARD PROCESSING SYSTEM

One of the biggest benefits of the airborne monitoring system is
the provision of quasi-live traffic data. But to allow detecting and
tracking of vehicles some preparatory steps must be performed
which are described in the following. Thereafter the traffic mon-
itoring itself is described.

2.1 Image Acquisition and Orthorectification

The 3K-camera system consists of three non-metric Canon EOS
1Ds Mark II mounted on a ZEISS aerial platform. One looks in
nadir direction and two look in oblique sideward direction result-
ing in an increased FOV of up to a max. angle of 110 degree
/ 31 degree in track/flight direction. The cameras operate at an
acquisition rate of up to 3Hz to enable automatic vehicle track-
ing. With an image size of 4992 · 3328 pixels and a color depth
of 24 bits the overall output data rate of the camera system is
3.5 GBit/s ≈ 428 MByte/s. With JPEG compression within
the cameras this data rate can be reduced to 54 MByte/s assum-
ing an average image size of about 6 MByte per image. This high
input data rate on the one hand and the processing intensive mod-
ules on the other hand put high demands on the on-board image
processing hardware, which consequently leads to a multi-host
solution with five PCs in total (Fig 1). All of them run 32bit-
Windows XP due to the fact that some of the third-party soft-
ware we use in our processing system only supports Windows.
Each camera is connected via Firewire IEEE 1394a to a dedi-
cated host. It streams the images directly without memory-card
buffering to the camera PCs (PC1 - PC3). The EOS Digital Cam-
era Software Development Kit (EDSDK) is installed on each of
these hosts and provides a C language interface for controlling
connected cameras and downloading images to the host PC. Sup-
ported operating systems are Microsoft Windows 2000 or higher
and Mac OS X since version 10.4. The camera PCs have an iden-
tical hardware setup as shown in Fig. 1 and Table 1. Since the
orthorectification and georeferencing process needs the exact po-
sition and orientation of the airplane IGI’s AEROcontrol, a GP-
S/IMU system, is connected via Ethernet to the onboard system.
The fibre-optic gyro based Inertial Meassurement Unit and the
AEROcontrol with its integrated 12-channel L1/L2 GPS receiver
are triggered by the Mark II’s external flash signal (Fig. 2). Every



PC1

PC2

PC3

PC4

PC5

Firewire
(IEEE 1394a)

Gigabit Ethernet 
IEEE 802.3ab

Proprietary S-band 
downlink

Data rate: ~10Mbit/s

Technical Data of ARGOS 
machines

CPU: Intel Core 2 Duo 3GHz 
or
Core 2 Quad 2.6 GHz
RAM: 2 Gbyte
Graphics card: NVIDIA 
GeForce 9800 GTX

Figure 1: Topology of the onboard network. Each camera is di-
rectly connected to PC1,2,3 which perform georeferencing and
orthorectification. Vehicle tracking takes place on PC4. PC5
sends the results via a proprietary S-band transmitter to the
ground.

time a flash signal is received the AEROControl sends coordi-
nates and orientation via a TCP connection to one of the camera
PCs. The camera module runs a TCP client and matches the re-
ceived geo-data with the image received from the camera. The
image is written to disk where it can be read in by the Ortho Mod-
ule. The geo data is sent to the Ortho Module via message pass-
ing. After the orthorectification process itself, which is described
in detail in (Mueller et al., 2002), has completed, it writes the or-
thorectified image to disk and does not keep it in main memory.

2.2 Traffic Monitoring

For traffic monitoring aerial images are recorded in a special mode
called burst mode. Each image burst consists of 3-5 images taken
with a high repetition rate of up to 3 Hz. In order to keep the data
amount as low as possible, no image data is recorded between to
bursts. Within this break the plane moves over the ground, until a
new region is in sight the field of view of the cameras. A typical
break lies between 5-7 seconds depending on flight height and
airspeed. For automatic traffic data extraction each image burst
is processed separately. Processing starts with vehicle detection
on the first image of each image sequence (burst) followed by a
vehicle tracking based on template matching between the image
pair consisting of the first and second image of the sequence.

With this strategy the traffic parameters flux and density can be
derived from aerial image sequences. Vehicle detection performed
on the first georeferenced image of the sequence gives the vehicle
density whereas vehicle tracking applied on all consecutive (geo-
referenced) image pairs gives the velocity of the vehicles so that
the flux of the traffic can be calculated.

Vehicle detection is performed by the application of two classi-
fiers to the first image of each sequence with the use of a priori
knowledge of the rough position of the roads inside the image ob-
tained from a road database. The classifiers are based on the algo-
rithms AdaBoost and SVM and were trained offline by a training
dataset consisting of (aerial) thumb images of 3000 vehicles and
more than 10000 negative examples. We obtain a classification
quality of more than 80 % even in complex scenarios like down-
town areas.

Vehicle tracking between two consecutive images of the burst is
done by template matching based on normalized cross correla-
tion. At each position of a detected vehicle in the first image of
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Figure 2: Each Camera Module on PC 1,2 and 3 gets coordinates
and orientation from a DGPS receiver and an IMU. Every time
the camera fires it triggers the DGPS receiver to send the geo
data of the projection center of this point in time to the Camera
Module.

the image sequence a template image is created. Then in the sec-
ond image of the sequence a search space for this vehicle is gen-
erated depending on the position of the vehicle in the first image,
driving direction obtained from a road database, and the expected
maximum speed for the road plus a certain tolerance. Within that
search space, the template is correlated and the maximum cor-
relation score is stored in connection with the template position
within the maximum appeared. This represents the found match
of each vehicle in generally. The correlation is done in RGB-
color space. Since all images are stored with their recording time,
vehicle speed can directly calculated from both the position of
the vehicle detected in the first image and the position of the cor-
responding match in the second image. Then, vehicle tracking
is applied to the following image pair of the sequence. Vehicle
tracking performs well with a quality of 90-95 %. The process-
ing chain of the traffic software prototype is built up modular,
since all modules were built as self-contained programs.

3 INTERPROCESS COMMUNICATION

Until now nothing has been said about how the modules exchange
data. The current version of our onboard processing system trans-
fers images between modules just by writing and reading them
to/from hard disk. This simple and easy-to-implement mecha-
nism might not be the ideal solution in terms of access times and
transfer rates but has in the age of multi-terabyte drives a nearly
infinite buffer size. Nevertheless this paper wants to investigate
alternative Interprocess Communication mechanisms (IPC) be-
cause as described in Cha. 1 time is the crucial point in our sce-
nario. Windows provides nine mechanisms for facilitating IPC.
A comprehensive overview of these mechanisms gives (MSDN,
2010b). Since we have several hosts connected via Gigabit Eth-
ernet, the IPC mechanism must support processes running on
different hosts. Clipboard and its extension Data Copy do not
have network support. Microsofts Distributed Component Object
Model (DCOM) and CORBA - both widely used middlewares for
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Figure 3: The Traffic Processor needs three consecutive images
to track vehicles in orthorectified images. The Vehicle detection
reads in the first image and searches for vehicles with the help of
a road database. For tracking the second image is loaded. The
third image is used for the second car tracking iteration.

large distributed systems - can be compared in terms of complex-
ity, timing and functionality and are not appropriate for our rather
small system. Dynamic Data Exchange (DDE) is considered to
be not as efficient as newer technologies and therefore can be
excluded as well. Mailslots and anonymous pipes only provide
one-way communication. Named Pipes provide all the necessary
functionality but each pipe client opens one thread, which should
be avoided. Other mechanisms like I/O Completion Ports provide
better performance through better thread management (Richter
and Nasarre, 2007).

Windows Sockets and File Mapping, however, are a good so-
lution. The Winsock-API provides simple functions to transfer
messages between processes, regardless of whether they run on
the same host or not. This messages are for the exchange of ad-
ministrative data like coordinates or orientation angles. We are
also going to meassure transfer and processing times of these
messages but the main problem is the exchange of the large im-
ages between the processes.

3.1 Intra-Host Data Exchange

The Windows File Mapping concept enables processes to share
images by passing pointers, but it only works if the processes
reside on the same host. It is used to transfer images from the
CameraModule to the OrthoModule (2). The Windows-API pro-
vides the FileMapping concept to create a memory, which can
be shared with other processes on the same host. At first the
function CreateFileMapping() called with a unique character-
based string creates a file mapping object. This object is used to
call the function MapViewOfFile() which returns a pointer to
the first byte of the newly mapped address space. This pointer
can be used to copy data into this shared memory (e.g. by using
memcpy()). All other processes on the same host firstly open the
shared memory by calling OpenFileMapping() and secondly
by calling also MapViewOfFile(). The second process must en-
sure that OpenFileMapping() is called with the same character-
based string as only already created file mapping objects can be
opened with this function and this character-based string serves
as the object’s system-wide ID. To subdivide this shared address
space into local pages MapViewOfFile() is called with the pa-
rameter dwFileOffset. Also the size of this mapped view can
be specified. With these parameters it is possible to make a part
of the shared memory available to the address space of the call-
ing process. The file offset must be a multiple of the system’s

allocation granularity which is usually 65536 bytes.

3.2 Inter-Host Data Exchange

To get the orthorectified images from the Ortho Module to the
Traffic Processor we use Server Message Block (SMB). In this
case, however, the Ortho Module writes the images to the camera
PC’s disk and the Traffic Processor has to load it into RAM again
before processing can begin. This could be avoided with a direct
RAM-to-RAM transfer from a camera PC to PC4.

4 RESULTS AND DISCUSSION

The focus of the following tests is on timing performance as well
as on the detection of data pile-ups between the image processes
of the on-board network.

4.1 Test Setup and Methods

Camera
Model Canon EOS 1Ds Mark II
Sensor Full frame CMOS sensor 24x36mm
Lens Canon EF 50mm
Hardware
CPU Intel Core 2 Duo E8400 @ 3GHz
RAM 2.0 GByte
Network Intel PRO/1000 GT Desktop Adapter
Video Nvidia GeForce 9800 GTX,512 MB
HDD Seagate Barracuda ST31000340NS
Software
Camera API EDSDK v2.6
OS MS Windows XP Prof. Ver. 5.1.2600 SP3
Compiler Visual C++ 9.0.2

Table 1: Test setup: All PCs in this test have an identical hard-
ware setup except of PC4 which is equipped with an Intel Core 2
Quad 2.6 GHz CPU.

To measure the time on Windows operated machines as accu-
rately as possible we use the built-in “High-Resolution Timer”
of the Windows-API (MSDN, 2010a). This is done by mainly
calling the following two functions in our test programs:

BOOL QueryPerformanceFrequency
(LARGE_INTEGER *lpFrequency);

BOOL QueryPerformanceCounter
(LARGE_INTEGER *lpPerformanceCount);

Initially the function QueryPerformanceFrequency() must be
called to determine if the system supports a high resolution counter.
If it does, the pointer lpFrequency points to a variable that re-
ceives the counter frequency in counts per second, otherwise the
bool-return value is zero. Most often the counter’s frequency is
equal to the CPUs clock rate. Every time the function Query-

PerformanceCounter() is called the variablelpPerformance-
Count receives a pointer to a 64-bit signed integer value, which
represents the absolute number of counts since the systems start-
up. Now it is possible to calculate the difference between two
subsequent calls and convert it to milliseconds.

4.2 Chronological Analysis

The drawn-through zig-zag line in Fig. 4 shows the time it takes
to orthorectify an image with a spatial resolution of 20 cm. Read-
/write operations from/to disk are not included in this first mea-
surement. With an average processing time of about 12s it ac-
counts for the major part of the overall processing time of the Or-
tho Module. The second measurement (dashed line) represents
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Figure 4: The first line shows the processing time without read
and write operations. The second line represents the absolut time
it takes to write one orthorecitified image to disk. The third line
at the bottom represents the same write operation except the fact
that it is written to RAM.
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Figure 5: The processing time of the traffic processor varies be-
tween 10 and 33 seconds - depending on the number of streets
and vehicles in the processed image.

the write operations for every image of the test sequence. On av-
erage it takes 2 seconds to write an orthorectified 200-Mbyte im-
age to disk which means that the hard disk access time consumes
14 % of the overall orthorectification processing time. The next
interesting step is the Traffic Processor. Its processing times per
image are shown in Fig. 5. They vary widely between 10 and over
30 seconds. This is due to the fact that the input image also varies
in number of streets and vehicles. If almost no motorways are on
an image vehicle detection and tracking can be completed much
faster or sometimes even skipped which results in lower process-
ing times. As shown in Fig. 3 the image is read into memory
three times if the complete tracking algorithm is applied. Then
the processing time reaches its absolute maximum of 34 seconds
(Fig. 5). Read operations from hard disk need six seconds or 17
% of this time.

4.3 Shared Memory Environment

As we stated earlier the overall processing time must be leveled
down as low as possible in order to transfer more images to the
ground. To reduce the transfer time between Ortho Module and
Traffic Processor these two modules can exchange images via a
shared section in main memory (see also Cha. 3.1). With this
method the relatively slow access times of hard disks can be
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Figure 7: Similar to Fig. 6 this diagramm shows the amount of
data which is processed by the Ortho Module but not by the Traf-
fic Processor.

avoided. The third graph in Fig. 4, which is labeled “write im-
age to RAM”, shows the time it takes to write the orthorectified
images to main memory and not to hard disk. These images with
a size of about 200 Mbyte are written in 0.16 seconds to RAM,
that is 14 times faster than the transfer to hard disk. During a typ-
ical flight campaign we shoot at least 100 images in burst mode
per camera. If the images were not written to disk but to RAM
the gain in time would sum up to over three minutes until the end
of the campaign.

4.4 Amount of Data between Modules

For further investigation we now focus on the amount of data
which must be buffered between each processing step. This must
be done when migrating large amounts of memory from disk to
RAM because of the RAM’s much smaller size. We can simply
run out of memory if the Camera Module’s output data rate is
much higher than the Ortho Module’s input data rate (Fig. 6).
Because of the relatively fast acquisition of the camera and the
comparatively slow orthorectification process the amount of data
between the modules piles up to over 500 Mbytes until the end
of a flight campaign. These 500 Mbytes are JPEG images, RAW
images would naturally produce a much higher amount.



Another test should show the data pile-up between Ortho Module
and Traffic Processor and implies that - unlike in Fig. 2 - both
modules run on the same host. It is the same scenario as the one
in Fig. 6 except that it is one step further in the processing chain.
The main difference is the ratio between the processing times. On
the one hand Ortho Module and Traffic Profcessor both need sev-
eral seconds for one image whereas the Camera Module produces
the images almost immediately, on the other hand these orthorec-
tified images are much larger than the compressed JPEGs, they
need 200 Mbyte of memory instead of 5 Mbyte. Slight differ-
ences between processing times can quickly lead to large data
pile-ups infront of the Trafic Processor which exceed the size of
the host’s RAM. Fig. 7 shows the result of this test. The outputs
of both the Ortho Module and the Traffic Processor climb within
a flight campaign towards the 2 GB barrier - the size of the built-
in main memory and the maximum address space 32bit-Windows
can handle per process. But the crucial point is the difference be-
tween these two lines, as all images which have run through the
traffic processor can be deleted from memory. After 150 seconds
of processing 3 to 4 images (750 Mbytes) are still not processed
by the traffic processor. If we consider that the Ortho Module per-
manently holds a 500-MB digital elevation model in memory, the
space for additional images gets scarce. This must be considered
when building-up a RAM-based processing chain.

5 CONCLUSIONS AND FUTURE WORK

During a typical flight campaign about 100 images per camera
must be acquired, orthorectified, analyzed and partially sent to the
ground. In principal this goal can be reached but there are some
possibilities for optimization. The Camera Module can only pro-
vide images as fast as the cameras can shoot them and the images
are buffered in front of the Ortho Module anyway. So the pro-
cessing time of the Ortho Module and the Traffic Processor have
the most potential for a massive speed-up of the system. Another
point is the exchange of data via shared memory which can ac-
celerate the overall processing time by three minutes. But it must
be taken into account that the size of main memory is limited. As
soon as the OS must transfer data to the pagefile, the advantage
of the shared memory is gone.

The focus of future work lies on the acceleration of the processing
times itself. A succesful implementation of improved algorithms
could lead to a considerable speed-up. These new implementa-
tions should use the help of hardware acceleration to get opti-
mum results. With the help of NVIDIA’s programming interface
CUDA the orthorectification could perform much faster on the
computer’s video card. Almost no additional hardware is needed
which is a big advantage for the relatively fix setup of the onboard
processing system.
Another maybe additional solution might be Field Programmable
Gate Arrays (FPGA). They could not only speed up our processes
but could also shrink the dimensions of the processing rack - an-
other advantage for airborne sensors.
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