
 

FUSION OF OPTICAL AND TERRESTRIAL LASER SCANNER DATA 
 
 

Julien Li-Chee-Ming, Costas Armenakis 
 

Department of Earth and Space Science and Engineering 
Geomatics Engineering, GeoICT Lab 

York University, Toronto, Canada 
{julienli} {armenc} @yorku.ca 

 
Commission I, WG I/5 

 
 
KEY WORDS:  Terrestrial Laser Scanning, Photogrammetry, Sensor Registration, Point Texture Mapping 
 
 

ABTRACT : 

 
Optical imagery and range data can be registered to create photo-realistic scene models via texture mapping. Presented in this paper 
is an alternative approach where true colour (RBG) point clouds are generated by automatically fusing a close-range optical (RGB) 
image acquired with an uncalibrated digital camera with the corresponding high-density 3D lidar point cloud collected with a 
terrestrial laser scanner (TLS). The alignment of optical pixel colour values and lidar point cloud is obtained by estimating the 
position and orientation of the camera with respect to the lidar point cloud reference system. To perform this sensor co-registration, 
an automated corner feature extraction algorithm, followed by area-based image matching is applied between the optical data and the 
lidar intensity image to establish point correspondence.  The matching process is solely based on point matches and does not use 
external control or calibration patterns.  The 3D lidar points of the corresponding lidar intensity image corner points are then 
extracted from the point cloud. As these 3D lidar points correspond to the extracted optical image corner points, a bundle self-
calibration adjustment with additional parameters is applied using the extended collinearity equations to estimate the interior and 
exterior orientation of the camera. The RANSAC robust estimator is used to reduce the influence of outliers in the estimation of the 
camera parameters. Having established the mathematical relationship between image space and lidar points a photo-realistic 3D 
model is generated.  Through reverse mapping, each point in the lidar point cloud is assigned the RGB value of the image pixel upon 
which it is projected.  Experiments are performed observing typical urban scenes, particularly building facades. The feasibility and 
potential of estimating the co-registration parameters using a TLS is evaluated in terms of accuracy of the results. The true calibration 
parameters, provided by the TLS manufacturer, are used in the validation of the registration parameters. The technique has reliably 
aligned a camera with the TLS geometry for the simultaneous generation of point based photo-realistic 3D models. 
 
 

1. INTRODUCTION 
 

Geometrically and photo-realistically accurate three 
dimensional (3D) building models have many applications in 
geomatics and other disciplines. Examples include aids in 
mapping and navigation, city planning, city and building 
evacuation planning, real-estate advertising, and film and video 
game development.  One way of creating these 3D models is by 
generating prismatic primitives through processing range points 
collected by light detection and ranging (lidar) instruments 
followed by photo-realistic texture mapping from optical 
images covering the building.  Finding the mathematical 
mapping by computing the relative orientation between sensors 
is referred to sensor registration.  (Zitoza et. al., 2003) present a 
review of registration methods, classified according to their 
nature (area-based and feature-based) and according to four 
basic steps of the image registration procedure: feature 
detection, feature matching, mapping function design and image 
transformation and resampling.  Most registration methods fall 
into two broad categories.  First, photogrammetric methods 
register two or more sets of optical images, where most 
methods require specially fabricated and positioned targets.  
Secondly, range-based methods register two or more sets of 
range images or point clouds.  Over recent years, several 
approaches have been developed that register 2D imagery with 
3D range data.  The most relevant to this study is the work done 
by (Aguilera et al., 2009) in automatic co-registration of 

terrestrial laser scanner (TLS) and uncalibrated digital camera 
data. This method is simple and flexible while overcoming 
limitations of other methods.  Specifically, it is solely based on 
simple point matches, it does not use calibration patterns and it 
does not require stereoscopic setup or physical attachment of 
the two sensors.  This paper presents a similar method to 
automatically register optical (RGB) imagery from a digital 
camera with range imagery from a TLS in order to verify the 
achievable accuracy and evaluate possible alternatives in the 
work flow.   
 
The method utilizes well-known algorithms to ensure datasets 
are registered with precision and reliability, and integrates 
robust error checking to account for the heterogeneity of the 
data.  The structure of the paper is as follows.  Section 2 and 3 
describe feature detection and matching, respectively.  Section 4 
explains the mapping function design and image resampling 
approach.  Section 5 presents the experimental results.  Finally, 
Section 6 outlines the conclusions and future work. 

 
 

2. FEATURE DETECTION 

 
Feature detection and matching can be done interactively by the 
user.  This is time consuming and introduces human error, 
especially if many images are processed.  An alternative is to 
automatically extract then match distinct features in each image.  



 

This is known as feature-based image matching.   Many 
alternatives exist, where in any case features have specific 
properties.  Specifically, a feature is a salient point in the image 
and the feature is highly correlated with the corresponding 
feature in an overlapping image.  The particular criteria for this 
experiment are:  1) the variance of the range measurements 
surrounding the feature is small.  Features such as tree leaves 
and building edges are noisy and cannot be accurately matched, 
hence they do not serve as good correspondence points; and 2) 
all the features are evenly distributed throughout the image, and 
they do not lie in the same plane.  This ensures the estimated 
transformation is accurate. 
 

 2.1  Generation of 2D Intensity Images  
 
Automatically extracting features from 3D objects is difficult 
and computationally intensive.  The proposed solution to 
efficient feature extraction involves constraining the problem to 
2D.  This is practical for point clouds collected from a static 
TLS because each scan can be considered as 2.5D, implying the 
intensity values can be projected to a plane without distortion.   
 
In the first step, the irregular point cloud is resampled to a grid 
by equation (1).  Each pixel is populated with an intensity value 
using a nearest neighbour (NN) interpolation.  The intensity 
value i(X, Y) represents the strength of the return signal as it is 
recorded by the TLS at position (X, Y) in the TLS coordinate 
system.  The horizontal and vertical dimensions of each pixel 
(DX and DY, respectively) are set such that the intensity image 
has the same resolution of its corresponding optical image.  If 
this is satisfied and the optical image has the same object in its 
field of view as the intensity image, the image scales will be 
approximately equal. This facilitates matching corresponding 
features using an area-based approach.  An orthographic 
projection is used, where the X-coordinate of each point is 
transformed to the horizontal axis of the grid (column c).  
Similarly, the Y-coordinate of each point is transformed to the 
vertical axis of the grid (row r).   
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where [ ] represents rounding to the nearest integer and NN( ) 
represents the nearest neighbour interpolation operator.   
 
The size of the kernel depends on the resolution of the optical 
image and the point cloud’s sampling interval.  To eliminate ‘salt 
and pepper noise’, a median filter is used on the intensity image.   
 

 2.2  Corner Extraction 
 

A wide variety of feature detection methods exist.  The chosen 
method depends on the nature of the data.  (Zitoza et. al., 2003) 
list the main area-based and feature-based methods, where 
edges and corners are commonly used features.  The Scale 
Invariant Feature Transform (SIFT) is a popular approach 
developed by (Lowe, 1999). Features are extracted that are 
invariant to image translation, scaling, and rotation, and 
partially invariant to illumination changes and affine or 3D 
projection.  However, difficulties were encountered during the 
matching process due to the degree of dissimilarity between the 

datasets. This research is aimed towards modeling urban scenes, 
where parallelism and orthogonality exist naturally. Thus, 
corners serve as reliable features.  To identify corners, 
histogram equalization enhances the edges and then a Sobel 
filter extracts horizontal and vertical binary edge maps from the 
gray scale of the optical image.  The intersection of horizontal 
and vertical edge maps yields the corner features.  The 
threshold of the edge detector is adjusted according to the image 
resolution and radiometric properties.  
 
 

3. FEATURE MATCHING 
 
Correspondence between the features detected on the lidar 
intensity image of the 3D object and those detected in the 
optical image is approximated using normalized cross-
correlation.  This area-based matching algorithm is most 
effective when the images have similar scales, intensities, 
vantage points, and orientations.  To increase the correlation 
between the two images, histogram matching is used to 
manipulate the pixel value distribution of the intensity image to 
match the pixel distribution of the gray scale of the optical 
image.  Notably, the optical image should only contain the 
details present in the gridded point cloud.  Excluding sky and 
ground regions ensures the histogram matching will properly 
modify the intensity image.   
 
To begin the matching process, a kernel is centered on an 
extracted corner in the optical image.  The size of the kernel is 
specified by the user.  The matching point on the intensity 
image is located where the normalized cross-correlation 
between the kernel and the intensity image is the greatest.  If the 
second largest cross-correlation value is significantly lower than 
the greatest value, the match is likely correct.  A kernel is then 
centered on the matched point in the intensity image and the 
variance of the range values within the kernel is calculated.  The 
match is rejected if the variance is greater than a user defined 
threshold.  High range variance suggests the point could be, for 
example, a noisy building corner or vegetation.  In which case, 
the match is likely false or inaccurate.   
 
In another effort to eliminate false matches, the 2D affine 
transformation relating the RGB image to the intensity image is 
estimated.  Once more than 4 matches are obtained, a least-
squares adjustment is performed and false matches are 
identified through the analysis of the observation residuals. 
However, the system should be highly redundant before 
matches are rejected to ensure only outliers are filtered.  The 
match with the largest residuals is considered an outlier and it is 
replaced with a new pair of corresponding points.  The process 
is repeated until the sum of the squares of the residuals is below 
a user defined threshold.  An equal amount of features is 
selected from each quadrant of the image to ensure the solution 
is stable.   
 
Once an accurate estimate of the affine transformation 
parameters is available, all of the corners extracted from the 
optical image are transformed to the intensity image.  This 
densification of corresponding points ensures the camera 
calibration solution is accurately estimated through a RANSAC 
algorithm.  Corresponding points do not match exactly in some 
areas of the image. To provide an estimate with sub-pixel 
accuracy, point positions are refined with least squares 
matching (LSM) (Grün, 1985). 
 
 



 

4. TRANSFORM MODEL ESTIMATION 
 
The matched features are used to compute the registration 
parameters of the digital camera and the TLS.  These 
parameters are then used to map textures from the optical image 
to the point cloud, yielding a photo-realistic 3D model.  The 
problem of image to 3D model registration is closely related to 
the problem of camera calibration and pose determination, 
which estimates interior and exterior orientation of the camera. 
The camera model for a positive digital image is shown in 
Figure 1. 
 

 
Figure 1.  Camera-object geometry 

 
Interior orientation refers to the parameters linking the pixel 
coordinates of an image point (xim, yim), with the corresponding 
coordinates in the camera reference frame (x, y, -f).  
Specifically, the interior orientation parameters are the 
coordinates in pixel of the image center, or the principal point 
(xo, yo), the focal length f and any parameters used to model 
lens distortion dx.  Exterior orientation refers to the position 
(Xo, Yo, Zo)W and orientation (ω, φ, κ) of the camera with 
respect to a world reference frame, in this case the TLS sensor 
frame.  The orientation is described by rij, the elements in the 
3D rotation matrix relating the 3D coordinates of a point in the 
TLS sensor frame to the camera coordinates of the 
corresponding point.  The camera calibration and pose 
parameters are estimated by solving the collinearity equations.  
To increase the accuracy of the parameters, the collinearity 
equations are extended with corrections for the systematically 
distorted image coordinates.  These modified collinearity 
equations are known as extended collinearity equations   
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The most commonly used correction is for the radial lens 
distortion, expressed as 
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where ),( oimdoimd yyyxxx −=−=  

are the coordinates of the 
distorted image points, the radial distance is 222

dd yxr +=  
and k1 and k2 are the coefficients of the radial lens distortion 
polynomial.  For most cameras, including the one used in this 
experiment, the effects of decentering distortion (p1, p2) are 

negligible when compared to radial distortion, as seen in Table 
2.  This distortion is disregarded in this study.   
 
Certain considerations must be taken into account when solving 
for these parameters, particularly when only one image is being 
used.  1) The distortion parameters can significantly affect the 
image position of a point, which causes the solution to converge 
at a false minimum.  2) A good estimate for the interior and 
exterior orientation parameters is required to reliably determine 
the distortion parameters.  Based on these considerations, the 
calibration parameters are solved through a two-step approach. 
The first-step directly computes a closed-form solution for all 
the external parameters and internal parameters using Direct 
Linear Transformation (DLT) (Abdel-Aziz et al., 1971).  The 
second step is a nonlinear optimization based on the extended 
collinearity equations that incorporates radial lens distortion.  
 

 4.1  Solution by the DLT method 
 
The first approximation of the registration parameters is 
obtained using the DLT method, expressed as Equation (4).  
Computing the perspective transformation matrix by solving a 
linear system of equations is computationally fast because it is a 
closed-form solution, requiring no iterations.   
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Given N point matches, the linear system is: 
 

LAm =         (5) 
 
Where m is the vector of unknown DLT parameters, L is the 
vector of image observations and A is the Jacobian matrix of 
equation (4) with respect to m.  The DLT parameters are 
obtained using the least squares method: 
 

IPPLAPAAm TT == − ,)( 1
        (6) 

 
The physical camera parameters are derived from the DLT 
parameters.  This is a well-known algorithm and has been 
implemented and used by many groups.  However, this model 
does not incorporate the nonlinear radial distortion.  The 
distortion is absorbed in the residuals, thus the extracted camera 
parameters are biased.  
  
In order to reliably estimate camera calibration parameters, 
RANSAC (RANdom SAmpling Consensus) (Fischler and 
Bolles, 1981) is applied.  It selects the optimum solution among 
several computed registrations.  At least 6 matched points are 
required to obtain a solution for the projection matrix, but 
matching more points allows for a more accurate least squares 
solution and outlier detection.  To begin the process, a user 
specified number matches is randomly chosen from the set 
extracted by the correspondence process.  To ensure the features 
are well distributed, an equal amount of matches is selected 
from each quadrant of the image.  The subset of points is kept if 
sum of the squares of the residuals from the least squares 
adjustment is the below a user defined threshold.  Otherwise 
another subset of points is randomly chosen to compute the 
parameters.   
 



 

Notably, solving the camera parameters in equation (6) falsely 
assumes the residuals consist of uncorrelated, zero-mean 
random noise with equal variance.  To improve the solution, a 
non-linear optimal estimation procedure is undertaken, utilizing 
the extended collinearity equations and stochastic models for 
the observations and parameters. 
 

 4.2  Solution by extended collinearity equations 
 
The DLT solution is refined using an extended collinearity-
based nonlinear minimization approach.  Since the algorithm is 
iterative, the solution may converge incorrectly if an accurate 
initial estimate is not available.  High correlation between the 
parameters may also cause divergence.  For example, the focal 
length is highly correlated with the camera’s Z position.  A 
common solution uses convergent imagery to reduce this 
correlation.  Also, rotating the camera along its optical axis will 
reduce the correlation between the principal point position and 
rotational parameters of exterior orientation (Clarke et al., 
1998).  However, this algorithm is based on processing a single 
image, thus an alternative is used. Firstly, the parameters 
provided by the DLT method serve as good approximations.  
Secondly, the parameters are constrained by Po, the parameter 
weight matrix.  This unified least squares solution with 
parameter observations is found by solving the system of 
equations given by (Mikhail, 1976) 
 

ooTo lPPwAPA +=Δ+ )PA( T       (7) 
 
where A is the Jacobian of equation (2) with respect to the 
parameters, w represents the observation misclosure vector, lo is 
the parameter misclosure vector, which is oxx −ˆ  .  P is the 
weight matrix of the observations, and Δ is the parameter 
correction vector, expressed as 
 

[ ]Tooooo dkdkdydxdfdZdYdXddd 21κφω=Δ    (8) 
 

The observations and parameters are treated as uncorrelated due 
to the lack of knowledge of their precision.  Therefore, P and Po 
are diagonal matrices. Each iteration, weights are calculated 
using equation (9) and (10).   
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The weights are based on the residuals (ν and Δ) from the 
previous iteration.  This weighting scheme reduces the 
participation of outliers in the estimation of the calibration 
parameters.    
 
The covariance matrix for the camera resection is given by  
 

1T2 )A(ˆ −+= o
ox PPAC σ)     (11) 

 
where 2ˆ oσ  is the a posterior variance factor.  Once the 
parameters of interior and exterior orientation of the optical 
image are estimated, a photo-realistic and accurate visualization 
of a 3D model is generated by reverse mapping the RGB image 
values to the corresponding 3D TLS points.   

5. EXPERIMENTAL RESULTS 
 
Experiments are performed using a dataset with known 
calibration parameters to assess the registration approach in 
terms of accuracy.  A time of flight laser scanner, Optech’s 
ILRIS-3D (Intelligent Laser Ranging and Imaging System) is 
used to obtain a range image.  A consumer grade digital camera, 
the Nikon D50 is used to obtain an optical image.  Calibration 
parameters are provided by Optech specifically for York 
University’s ILRIS-3D scanner with the Nikon D50 camera and 
Nikon 20mm lens.  These parameters, listed in Table 2, 
contribute to the validation of the results of this experiment.  
 
The test site is situated in the north of Tennis Canada’s Rexall 
Center, on the York University Campus.  The field of view 
consists of many features that are not ideal to use as tie points, 
thus testing the filtering techniques.  Such features include 
trees, which are physically unstable, and glass windows, which 
yield noisy and inaccurate range measurements. The input data 
are an optical image (3008 x 2000 pixels) (Figure 2) and a point 
cloud (1,342,674 points) (Figure 3).  
 

 
 

Figure 2.  Optical image of the test site 
 

 
 

Figure 3.  TLS data of the test site 
 

The optical image is cropped by the user to match the field of 
view of the laser scanner.  This allows the pixel size of the 
intensity image to be automatically set to match the pixel size of 
the optical image.  Figure 4 shows the resulting intensity image 



 

generated from the point cloud data using equation (1).  The 
ground pixel dimensions of the intensity image are 1.52cm x 
1.48cm.  Figure 5 shows the cropped optical image.  The green 
pixels represent the corner features that meet the criteria in the 
feature extraction process. Figure 6 shows the intensity image 
after histogram matching.  The green pixels are the affine-
transformed features shown in Figure 5.  The size of the search 
kernel is 20 pixels.  It is evident that corresponding points do 
not match exactly in some areas of the image. Point positions 
are refined using LSM to provide estimates with sub-pixel 
accuracy. 
 

 
 

Figure 4.  Intensity image of the TLS data 
 

 
 

Figure 5.  Detection of corner points in the cropped optical 
image 

 

 
 

Figure 6.  Matched corner point in the histogram matched 
intensity image 

 
The interior and exterior orientation parameters approximated 
using the DLT method and RANSAC are provided in Table 1. 
It is evident that the results are biased from Optech’s calibration 

values given in Table 2.  This bias is also evident through the 
residual analysis (Table 3) as the mean of the residuals is offset 
from zero.  
 
In the second step, the parameters from the DLT method are 
used as an initial approximation in the collinearity-based least-
squares adjustment.  The calibration results are provided in 
Table 2.  These values are more accurate and precise than the 
parameters derived from the DLT method because radial lens 
distortion is modelled and stochastic models for the 
observations and parameters are incorporated in the least-
squares adjustment.  However, the radial distortion parameters 
cannot be accurately estimated as the signal is masked by 
measurement noise.  If estimates of the distortion parameters 
are necessary, the calibration procedure should replace the point 
cloud with a precise camera calibration test field, for example a 
traditional checkerboard pattern.  
 
The accuracy of the offset in the Z direction (Zo) is low because 
many control points lie in approximately the same plane - the 
building façade is planar.  A more stable solution is achievable 
with a larger variation in range measurements.  Further, the 
accuracies are low for the rotational parameters of the exterior 
orientation and the principal point offsets because they are still 
highly correlated.  As previously mentioned, shifts in the 
principal point can be compensated for with additional images 
captured by the camera in various orientations.  
 

Parameter Estimated Values Standard Deviation 
ω [degrees] 0.1172 0.258 
φ [degrees] 0.0247 0.343 
κ [degrees] -0.0074 0.665 
Xo [m] -0.132 0.136 
Yo [m] 0.214 0.244 
Zo [m] 0.330 0.451
f  [mm] 20.261 0.254 
xo [pixels] 1501.387 15.432 
yo [pixels] 1012.407 9.432

Table 1.  Calibration parameters:  DLT+RANSAC 
 

Parameter Optech’s 
Calibration 

Values 

Estimated 
Values 

Standard 
Deviation 

ω [degrees] -0.098 -0.124 0.253 
φ [degrees] 0.136 0.049 0.274 
κ [degrees] -0.402 -0.596 0.351 
Xo [m] 0.004 0.033 0.169 
Yo [m] 0.038 0.073 0.068 
Zo [m] 0.165 0.210 0.192 
f  [mm] 20.345 20.353 0.052
xo [pixels] 1495.429 1497.518 3.122 
yo [pixels] 1009.117 1010.550 4.18 
k1[unitless] 2.622e-4 1.872e-3 3.322e-4 
k2[unitless] -4.494e-7 2.699e-7 2.058e-7 
p1[unitless] 0.000 N/A N/A 
p2[unitless] 0.000 N/A N/A 

Table 2. Calibration parameters:  Control and Collinearity 
 
 
 
 
 
 
 
 

 



 

Statistic DLT Collinearity 
Maximum[pixels] 13.8 7.3 
Minimum[pixels] -9.0 -5.4 
Mean[pixels] -5.2 2.3E-03 
Standard deviation [pixels] 6.9 3.4 

oσ̂  [pixels] 24.4 7.7 
Table 3. Residuals analysis:  DLT and Collinearity 

 
Finally, once a complete camera model is computed, an 
automatic texture mapping algorithm is applied (Figure 6). It is 
evident that given correct and accurate correspondence, the 
camera is reliably calibrated. 
 

 
 

Figure 6:  RGB-based textured TLS point cloud 
 

6. CONCLUSIONS AND FUTURE PERSPECTIVES 
 

The presented paper has developed a procedure for automatic 
registration of a TLS and a digital camera, and simultaneous 
generation point based photo-realistic 3D models.    The most 
relevant aspects of the proposed approach include automated 
feature extraction, matching and outlier detection.  Automating 
these tasks drastically decreases the labour hours and human 
error attributed to the final product, especially if a large number 
of datasets is processed.   
 
Several improvements could be considered. For instance, the 
user interaction to provide a first approximation of the area of 
interest could be automated. Also, linear or planar features 
matching instead of point features may reduce outliers and 
increase the registration accuracy.  Future experiments will 
explore these possibilities and the alternative of registering an 
off-the-shelf camera with a laser scanner, also using lower 
resolutions and point densities.   
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