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ABSTRACT: 
 

A novel methodology to evaluate uncertainties in lunar element abundances is presented. Contrary to most terrestrial applications, 
lunar GIS data cannot be verified by in-situ measurements due to the limited number of ground control points and their reduced 
spatial extend. This investigation evaluates the uncertainty in lunar element abundance measurements without the use of ground-
checks but by statistical evaluation and comparison of datasets. We find that major elements (Oxygen, Iron, Aluminium, Titanium, 
Silicon and Magnesium) show distinct correlations between each other. This allows calculating the abundance of an element by 
deriving its value through a correlation law with another element. By using this method, we can verify remote measurements of the 
above mentioned geochemical components, and identify regions on the Moon where these correlation laws do not apply. These 
derivations can be explained by i) an erroneous measurement or ii) by an exotic mixture of elements in the lunar soil. Based on these 
considerations, conclusions can be drawn about the attribute uncertainty of geochemical measurements in the lunar soil. A special 
observation of this work was that most theoretically obtained values fit well to the measured ones. High derivations however appear 
mainly in the Near Side lunar mare regions where the correlation model does not fit. 
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1. INTRODUCTION 

Our celestial neighbour, the Moon, has shifted back into the 
focus of scientific interest. Various spacecraft are planned to be 
sent to the Moon in the coming decades. The objective of these 
international missions is the cartography of the lunar surface, 
the identification of resources for in-situ resource utilisation 
(ISRU), and, ultimately, the return of man to the Moon (Landis, 
2001). Consequently the precision of remotely sensed data 
needs to be considered for the choice of future landing sites. 
The attempt of translating the physical reality into a digital 
model leads to uncertainties. Since it will not be possible to 
eliminate those completely, they need to be represented and 
taken into account in any Decision Support System that is based 
on such GIS data. Uncertainties “must always be a notation that 
provides the language for reasoning and allows decision-
makers to evaluate the potential presence of errors in GIS data” 
(Zhang and Goodchild, 2002). The challenge in uncertainty 
evaluation of remote measurements is to quantify the accuracy 
of this data at the local scale. In terrestrial GIS applications, this 
process is termed “validation”. Validation of remotely sensed 
data is achieved by analytical inter-comparison to ground 
control checks, reference data or model outputs (Justice et al., 
2000). This can be done by the collection of in-situ 
measurements, low altitude photography by aircraft or the 
comparison to independent, but identical in content, satellite 
observations. In the case of the Moon, very little ground-control 
points exist which can be used to validate orbital measurements. 
Extrapolating this data to the whole surface of the Moon would 
lead to errors, since their correlation to orbital measurements is 
rather low, as it was shown elsewhere (Weiss et al., 2009).  
 
We describe efforts to model attribute uncertainties in 
geographic data of the Moon, where no or little in-situ 
measurements are available. The methodology that is used, 

evaluates the uncertainty by analysing correlations between 
orbital measurements of different elements. The uncertainty is 
estimated based on the deviation of the measured value from 
the though-correlation-expected one. The methodology was 
applied in a first work on the distribution of Oxygen in the lunar 
soil (Weiss et al., 2009). In this paper, we extend the model to 
six other major elements in the lunar soil: Silicon, Titanium, 
Aluminium, Iron, Magnesium and Calcium.  
 
This paper is structured in two parts: In the first chapter, we 
will review different factors that increase the uncertainty in 
remote measurements of the lunar surface. We will demonstrate 
and discuss the problem of using the few in-situ measurements 
available as “ground-truth” for remote measurements. In the 
second part, we will present the method to estimate attribute 
uncertainty in lunar GIS data by using a correlation law 
between different elements. This methodology will be applied 
to estimate the uncertainty of the element measurements 
mentioned above. The result is a chart of the lunar surface with 
regions where the measured value does not fit to the 
theoretically derived one. We will conclude this work by 
studying the spatial distribution of the identified regions and the 
possible origin of the deriving values.  
 
 

2. UNCERTAINTY IN LUNAR GIS DATA 

Sources of uncertainty in lunar surface data 

In GIS data, uncertainties can be categorized following their 
consequence, namely i) positional uncertainties, ii) attribute 
uncertainties or iii) temporal uncertainties. The latter play a 
rather minor role in the context of lunar geography; the 
processes that form or modify the Moon’s surface are slow, and 
the frequency of observations low. However, temporal 
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uncertainty need to be taken into consideration in the 
photogrammetry of the lunar surface since changes of the 
lightening conditions between the lunar day and night can lead 
to different topographical interpretations. Positional and 
attribute uncertainties are considered of high importance in 
selenographic data. The low data quantity, coverage, and scale, 
make it today very difficult to establish precise models of the 
Moon’s geology and chemistry. In the coming phase of lunar 
exploration, much effort is focusing on the measurement of the 
chemical composition of the lunar surface. Uncertainties in 
these measurements, the attribute of the spatial data, might lead 
to misinterpretations and faulty decisions.  

2.2 

2.3 

 
Attribute uncertainties can originate in system limitations, 
mission limitations or have a target specific origin. System 
limitations include all parameters that are related to the 
hardware of the remote sensing satellite: its measurement 
capabilities, its resolution, its temperature and the Internal 
Orientation Parameters (IOP) of the instrument. Mission 
limitations include the spacecraft’s ephemeris, orbital 
parameters and specific events during the mission time: The 
satellite’s altitude, orbital velocity and Exterior Orientation 
Parameters (EOP) influence the capability of the instrument to 
perform measurements on the surface. Solar Particle Events 
(SPE) and the Sun’s relative position further influence the 
measured data. Third bodies’ influence decreases the accuracy 
of the satellite’s position determination, and therefore increases 
the uncertainties of its measurement data. Finally, the 
characteristics of the target can further determine the precision 
with which the surface is analyzed: terrain morphology, surface 
roughness, surface albedo, surface temperature and MASCONS 
can bring variations in the remote measurement’s precision. 
Figure 1 resumes schematically the factors mentioned above. 
 

Figure 1.  Parameters that influence the attribute uncertainty  
 
Modelling the uncertainty of remote measurements as a 
function of the above mentioned parameters becomes therefore 
a complex problem. It requires a perfect knowledge of all 
hardware parameters, the mission’s ephemeris and eventual 
surface influences.  
An alternative is to compare the remote measurement with 
ground-control checks to search for potential derivations. The 
problem is, however, that there are very little in-situ 
measurements available, as it will be shown in the following 
section. 
 

The dilemma of the missing ground-checks 

The Moon is certainly -apart from planet Earth- the most 
analysed object in the Solar System. It remains, however, a 
largely undersampled surface: Astronauts and robots, from 
several US and Russian missions, brought back 382kg of Moon 
dust and rock (Vaniman et al., 1991). The landing sites of these 
missions are limited to the equatorial region of the Near Side. 
We dispose today of no in-situ measurement of the poles or the 
Far Side. The surface samples are not only limited in their 
spatial extend, but also in their geological context, where they 
were taken: Most missions aimed at (safer) landing sites in the 
lunar Mare regions. Actually only the Apollo 16 mission 
brought back samples from a site that is considered as Highland 
region. Figure 2 gives an overview of the different landing sites 
where lunar soil was returned to Earth. The number of samples 
and weight is given for the Apollo missions. In an earlier work 
it was shown that the returned samples do not correlate well 
with orbital measurements of element abundances (Weiss et al., 
2009). This fact makes it difficult to extrapolate remote data to 
a local scale; both measurements do not fit together. Several 
reasons can be stated which might explain this divergence: The 
rocks that were returned by astronauts and robots did eventually 
not represent the bulk of the surface material. While the first 
manned mission to the Moon, Apollo 11, recovered a majority 
of lunar regolith, all consequent missions brought back 
increasing numbers of solid rock (Vaniman et al., 1991). The 
collected samples were eventually chosen since they draw the 
attention of the astronauts or the mission controllers. But those 
might represent a rather exotic lithology compared to the 
location. A second potential explanation is that the footprint of 
the remote measurements largely exceeds the exploration range 
of the manned missions (Vaniman et al., 2002; Berezhnoy et al., 
2006). The recovered samples therefore represent only a small 
fraction of the area covered by the satellite’s instruments.  
 
However, Apollo 17 in-situ measurements were used to 
extrapolate the geological data to unsampled areas in the same 
region by using Clementine UV-VIS remote measurements 
(Jolliff, 1997). The author notes good correlations between the 
Iron oxide values of the Apollo samples and the spectral 
parameters of the Clementine data. Elphic and co-workers 
(1998) developed algorithms to derive the content of Iron oxide 
and Titanium dioxide lunar wide from Clementine spectral data. 
Despite these efforts, it is obvious that Apollo and Luna 
samples cannot serve as global “ground-truth” for the validation 
of orbital measurements of the lunar surface chemistry. Other 
techniques are needed to gather the ground-truth.  
 

A geochemical model based on element correlation 

The basic idea behind the following concept is that similar 
soils, which underwent similar formation processes, should 
exhibit similar chemical mixtures. A soil that has a specific 
abundance of one element should therefore have a specific 
mixture with other elements. The knowledge about the 
abundance of one element can therefore be used to derive the 
abundance of another element, if both correlate. 
This method allows deriving the composition of a soil by 
knowing only some parts of its elemental composition. It 
furthermore allows evaluating the probability of justness of 
remote measurements by inter-correlating different elemental 
datasets. The advantage of this methodology is that it can work 
without Ground Control Points. Nor does it need independent 
datasets of the same kind (the same measurements by different 
satellites). Both are very limited for the lunar surface.  
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Figure 2. Positions on the Moon where in-situ samples have been returned to Earth. (A) Apollo mission and (L) Luna missions.  

The number of samples and the overall weight is stated in the columns. 
 
The main condition of this approach is that there exists a 
correlation rule between two chemical elements. The 
correlation between the elements x and y can be analysed 
through the fitting function given in (1), with its parameters α, 
the intercept and ß, the slope, 
 

y = α + ßx
 

(1) 

 
where the intercept is 
 

α = (∑ yi – ß ∑xi) / n`
n n 

i=1 i=1  

(2) 

 
The slope determines if there is a correlation between the two 
elements: 
 

∑(xi – x)(yi – y)
i=1

n

= 
Lxx ∑(xi – x)2

i=1

n

Lxyß=

 

(3) 

 
If β is larger than zero, then there is a positive correlation 
between both elements. If β is smaller than zero, then there is a 
negative correlation between the elements. And if β is equal to 
zero, then there is no or no simple correlation between both 
elements.  
 
The above considerations can be applied to the measurements 
done by the Lunar Prospector mission (Prettyman et al., 2002). 
Measurements of Oxygen, Titanium, Silicon, Aluminium, Iron, 
Calcium and Magnesium are available in 5° data products from 
the PDS Geosciences Node. Figure 3 shows one of the 
correlation plots, namely the one of Oxygen and Iron, as 
measured by the Lunar Prospector. The solid line in the middle 
of the diagram is the regression line as determined through (1). 
The dotted lines show the one-sigma and two-sigma borders of 

this correlation function. It was shown by Weiss et al., (2009) 
that Calcium shows no simple correlation to the other elements. 
This element was therefore excluded from the further 
considerations. 
 

Figure 3. Negative correlation between Oxygen and Iron. 
 
A theoretical abundance value of the above stated elements can 
now be calculated by using their correlation between each 
other. The theoretical values are then compared with measured 
ones at their specific position. Figure 4 shows the measured 
abundance of Oxygen (top) with the theoretically derived one 
(bottom). The yellow boxes mark surface cells that show 
derivations larger than one sigma between both values.  
 
Surface cells that show a deviation of one or two sigma were 
flagged in the GIS following to (4). 
 

α + ßx – y’

σ

< 1 → no dispersion

= ≥ 1 → flagged 1

≥ 2 → flagged 2
 

(4) 
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Figure 4. (Top) Oxygen content of the lunar soil as measured by 

the Lunar Prospector mission. (Bottom) Oxygen value as 
derived as a function of the measured Iron content.  

 
All six elements (Calcium was excluded) were compared in this 
way with each other. Table 1 summarizes the percentage of 
fitting surface cells.  
As a first result is that the majority of the theoretical values fit 
well to the measured ones. This offers the possibility to derive 
more precise charts of specific elements by deriving those from 
higher resolution data of other elements. Oxygen can, for 
example, be a quite precise indicator of Titanium and Iron. Iron 
as function of Titanium can even be predicted within one sigma 
in 98% of the cases. Oxygen, as one of the main ISRU elements 
could be derived by measuring the Iron content of the surface 
since in our study 94% of the calculated Oxygen values fitted to 
the measured ones.  
 
In the following, however, we will study the spatial distribution 
of the values that do not fit and try to find possible explanation 
to this phenomenon.  
 

Table 1: The input elements (left column) were used to derive 
the output elements (first row). The percentage shows the 
number of correct values within one sigma deviation.  

         └→ Output element  

 O Si Ti Al Fe Mg Ca 

O  89% 93% 83% 94% 76% 69% 

Si 89%  90% 72% 87% 80% 71% 

Ti 92% 87%  84% 98% 80% 77% 

Al 84% 74% 88%  90% 82% 71% 

Fe 94% 86% 97% 90%  85% 88% 

Mg 80% 83% 87% 82% 89%  82% 

Ca 77% 76% 85% 72% 84% 83%  

  ↑ Input element 
 
 

3. FROM CORRELATION TO UNCERTAINTY 

3.1 Spatial distribution of outlying surface cells 

In the previous chapter, a method was presented to derive 
element abundance values as function of a correlation to 
another element. It was shown that this method leads to a 
majority of fittings (within one sigma). However, some surface 
cells show large deviations between the theoretically calculated 
value and the measured one. These cells are defined in the 
following as uncertain, because their values do not follow the 
correlation rule. We will discuss in 3.2 different explanations 
for these outlying values.  
 
It is now interesting to study the spatial distribution of these 
outliers. Figure 5 shows three example charts of Titanium, Iron 
and Aluminium. The intensity of red colour indicates the 
number of deviations. If the cell is marked fit, then all five input 
elements delivered output correlations that fitted within the one 
sigma limit. If the cell is marked in deep red, then four of the 
output values, as function of the input element, derived. Two 
types of cells can be identified: single occurrences of outliers 
and in regions clustered cells. The Iron and Titanium show a 
clear concentration of the outliers in the Mare regions of the 
Moon (especially in the Oceanus Procellarum).  
 
 

 
 

Figure 5. Uncertainty charts for Titanium, Iron and Aluminium. The charts show a concentration of the derivation of values in the 
Oceanus Procellarum region. This fact offers the possibility to refine the models by separating the values into two categories. 
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3.2 

3.3 

Possible explanations 

We find two explanations for the occurrence of deriving 
abundances: i) Either the measured value is in deed erroneous 
or ii) the region shows an exotic mixture of chemistry due to a 
special formation process.  
In the case of the Mare regions it is more likely that the latter 
case applies. The above method used the totality of the 
abundance measurements of the lunar surface. However, in 
lunar geology, there is a clear separation between the Mare 
regions on the Moon and the Highland regions. While our 
method seems to deliver good results for the Highland regions, 
its deriving values are mainly located in the lunar Mare.  
 

Conclusions and further work 

A method was presented to evaluate the uncertainty in lunar 
element abundance values by comparing different element 
measurements done by the same remote sensing satellite.  
The paper discussed one challenge in the exploration of the 
lunar surface by observation methods, namely the lack of 
sufficient ground truth data to validate the remote 
measurements. The little in-situ data that was gathered by 
manned and robotic missions is insufficient in quantity and 
spatial extend to serve as model for the global surface. 
A novel method was developed to derive the chemistry of the 
lunar surface by correlating different elements with each other. 
The fact that some elements show a correlation allows to 
evaluate the uncertainty in the data products. If the theoretical 
value corresponds to the measured one, then there is a high 
probability that the remote measured value is correct. We 
showed that the majority of the surface cells fit well to this rule. 
However, large deviations occur in the Near Side Mare regions. 
A possible direction of further work is therefore to separate the 
Mare regions from this model and to develop an own 
correlation law for the Mare regions of the Moon.  
 
 

4. ACKNOWLEGEMENTS 

The authors would like to acknowledge The Hong Kong 
Polytechnic University for the support of this study. The 
datasets used here were produced by the Lunar Prospector 
mission and are disclosed by NASA and the Washington 
University in St.Louis on the website of the PDS Geoscience 
Node (http://pdsgeosciences.wustl.edu/missions/lunarp/reduced 
_special.html). We would like to express our thankfulness to the 
team that developed these products and made them freely 
available to the scientific community.  
The authors would like to thank two unnamed reviewers for 
their helpful input and encouraging comments. 
 
 

5. REFERENCES 

Berezhnoy, A.A., Hasbe, N., Kobayashi, M., Michael, G., and 
Yamashita, N., 2006. Petrologic mapping of the Moon using Fe, 
Mg and Al abundances, Advances in Space Research, 37, pp. 
45-49. 
 
Elphic, R.C., Lawrences, D.J., Feldman, W.C., Barraclough, 
B.L., Maurice, S., Binder, A.B., and Lucey, P.G. 1998. Lunar 
Fe and Ti abundances Comparison of Lunar Prospector and 
Clementine data, Science, 4, 281, pp. 1493-1496. 
 

Joliff, B.L., 1997. Clementine UV-VIS multi-spectral data and 
the Apollo 17 landing site: What can we tell and how well?, 
28th Lunar and Planetary Science Conference, Abstract #1770, 
Available online at www.lpi.usra.edu/meetings/lpsc97/ 
pdf/1770.PDF (accessed 90th July 2008). 
Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J. and 
Baret, F., 2000. Developments in the 'validation' of satellite 
sensor products for the study of the land surface, International 
Journal of Remote Sensing, 21, pp. 3383-3390. 
 
Landis, G.A., 2001. Materials refining on the Moon, Acta 
Astronautica, 60, pp. 906-915. 
 
Prettyman, T.H., Feldman, W.C., Lawrence, D.J., McKinney, 
G.W., Binder, A.B., Elphic, R.C, Gasnault, O.M., Maurice, S., 
Moore, K.R., 2002. Library least squares analysis of Lunar 
Prospector gamma ray spectra, 33rd Lunar and Planetary 
Science Conference, Abstract # 2012. 
 
Vaniman, D., Dietrich, J., Taylor, G.J., and Heiken G., 1991. 
Exploration, samples, and recent concepts of the Moon, In 
Lunar sourcebook a user’s guide to the Moon, Editors G.H. 
Heiken, D.T. Vaniman, B.M. French, Cambridge University 
Press, Cambridge USA. 
 
Vaniman, D., Lawrence, D., Gasnault, O., and Reedy R., 2002. 
Extending the Th-FeO sampling range at Apollo 14: Under the 
footprint of Lunar Prospector, Abstract No 1404, Proceedings 
of the 33rd Lunar and Planetary Science Conference, Houston, 
USA. 
 
Weiss, P., Shi, W.Z., Yung, K.L., 2009. Attribute uncertainty 
modelling in lunar spatial data, International Journal of Remote 
Sensing (in press). 
 
Zhang J. and Goodchild M., 2002. Uncertainty in Geographical 
Information, Taylor and Francis, London, 2002. 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

201


	Archives_FirstPage
	TABLE OF CONTENTS

	Session5
	037_Paper
	1. INTRODUCTION 
	2. UNCERTAINTY IN LUNAR GIS DATA 
	2.1 Sources of uncertainty in lunar surface data 
	2.2 The dilemma of the missing ground-checks 
	2.3 A geochemical model based on element correlation 
	3. FROM CORRELATION TO UNCERTAINTY 
	3.1 Spatial distribution of outlying surface cells 
	3.2 Possible explanations 
	3.3 Conclusions and further work 

	4. ACKNOWLEGEMENTS 
	5. REFERENCES 
	 





