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ABSTRACT: 
 
The aim of this study was to investigate the applicability of the distance correction parameter (DCP) integrated to the case-based 
prediction system CONSTUD to reduce the effect of spatial autocorrelation of training data in machine learning process. To achieve 
this, calculated similarity between observations is decreased by the so-called distance correction value (DCV – the quotient of DCP 
and distance between two observations). 50 machine learning iterations were carried through in the case of different DCP-s from 0 to 
15 000 m using random samples generated from 450 training observations from southern Estonia (Karula National Park and its 
vicinity). Independent validation samples were used to estimate the effects of the use of each DCP. Machine learning results showed 
that the Cohen’s kappa index of agreement decreased in accordance with the increase of DCP-s. The correspondences of field 
observations and predicted values followed the same trend. The explanation would be that with the increase of DCP-s successively 
more observations were rejected as useful ones. Conversely, no considerable decrease in correspondences of the predictions was 
recognized when DCP was increased. In our case, probably the most useful exemplars were chosen and the less useful ones were left 
beyond. As a result, scattered and probably spatially and thematically highly representative sample of observations remained. The 
border might be drawn at DCP from which the number of the in-between distances started to decrease considerably, but the 
correspondence in validation sample estimations as well as in training sample estimations remained relatively stable.  
 
 

1. INTRODUCTION 

This paper is related to the issues of autocorrelation of 
observations in training samples and to the spatial and thematic 
representativeness of training data, and also to the overtraining 
problems in predictive vegetation mapping. 
 
Spatial autocorrelation occurs when locations close to each 
other have more similar values than those further apart (the 
values of variables are not independent from each other). 
Autocorrelation of ecological phenomena may arise for 
different reasons (see Sokal & Oden, 1978). Positive spatial 
autocorrelation in moderate distances may accrue from spatial 
and temporal synchrony of certain abiotic factors that shape 
particular landscape patterns, e.g., blotched configuration of 
landscape components. In farther distances, positive 
autocorrelation may originate from regular variation of 
environmental gradients and habitat patches. Populations and 
species may be spatially aggregated due to their dispersal limits 
caused by different environmental and historical as well as 
intrinsic organism-specific factors. Among other reasons 
causing spatial autocorrelation in (predictive) models, is 
omitting an important variable from the model, observation 
biases (variance in data collection, sampling and mapping) 
(Dormann et al., 2007), etc. 
 
Spatial autocorrelation may be interpreted as intrinsic feature of 
a phenomenon providing additional information for spatial 
analysis. When spatial autocorrelation occurs, the values of 
variables are predictable on the basis of the values of the same 
variable in other locations. Luoto et al. (2005) found that 
performance of species–climate models depends on 
geographical attributes of the species, including spatial 
autocorrelation. They also found that butterfly species with 

more aggregated occurrence pattern (expressing high spatial 
autocorrelation) were better predicted compared to the species 
with scattered distribution (exhibiting low autocorrelation). 
 
However, the presence of spatial autocorrelation is frequently a 
disadvantage for hypothesis testing and prediction, because it 
violates one of the main assumptions of standard statistical 
analyses that residuals are independent and identically 
distributed (Dormann et al., 2007). The presence of positive 
spatial autocorrelation in model residuals (spatial dependency) 
may bias parameter estimates and can increase the likelihood of 
type I statistical error (Betts et al., 2006). 
 
Since spatially close locations/observations tend to be similar 
due to spatial autocorrelation, they predict each-other with great 
accuracy. As a result, deceptively high prediction accuracy 
(overtraining) occurs and the application of this set of training 
observations for more distant locations would not be so reliable.  
 
Accounting for spatial autocorrelation should increase 
prediction versatility. Taking into account autocorrelation is 
crucial when image data are classified, because estimations of 
classification accuracy that compare prediction and actual 
situation pixel by pixel, tend to overestimate results due to the 
autocorrelation of the pixel values (Muchoney & Strahler, 
2002).  
 
A variety of widespread statistical tools have been developed to 
correct for the effects of spatial autocorrelation in species 
distribution data. Dormann et al. (2007) presented different 
statistical approaches that efficiently accounted for spatial 
autocorrelation in analyses of spatial data. Most of the spatial 
modeling techniques they tested on spatially autocorrelated 
simulated data showed good type I error control and precise 
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parameter estimates. Accounting for autocorrelation via 
autologistic models has become common (e.g., Augustin et al., 
1996; Osborne et al., 2001; Luoto et al., 2005). It has been 
shown that including spatial autocovariates improves model 
prediction success (Augustin et al. 1996; Osborne et al., 2001; 
Knapp et al., 2003; Betts et al., 2006). Generalized estimating 
equations (GEE – an extension of generalized linear models) 
have been used by Augustin et al., 2005, Carl & Kühn 2007, 
etc. The use of GEE models reduced the autocorrelation of the 
residuals considerably indicating effectively removed spatial 
dependency. Though, Diniz-Filho et al. (2003) concluded that 
ignoring spatial autocorrelation does not cause problems 
necessarily in all analyses. 
 
The aim of this study was to introduce and test the usability of 
the distance correction parameter integrated to the case-based 
prediction system CONSTUD for extenuating the effect of the 
autocorrelation in predictions of spatial phenomena (in this case 
– vegetation classes).   
 
 

2. METHODOLOGY 

2.1 Study Area and Field Data 

450 training observations from southern Estonia (Karula 
National Park and its vicinity; Figure 1) were gathered mostly 
during the summers 2007 and 2008, partly during the 
inventories from 2001 to 2007. EUNIS classes (Davies et al., 
2004) were used as a predictable variable.  
 
 

 
 

Figure 1. Location of the study area (black square). 
 

 
2.2 Remote Sensing and Map Data 

Data layers of explanatory variables were: rasterized 1: 10 000 
Estonian base map and 1: 10 000 digital soil map, Landsat 5 
TM satellite images (scenes 186-19 and 186-20) of 21st of May 
2007 and 9th of August 2007, and the orthophotos from the 
year 2005. Layers for red, green, blue, yellow, hue, saturation 
and lightness were derived from orthophotos. In the case of 
satellite images, the NDVI layers were derived from the near-

infrared and red channel values. In addition, the Baltic 
SRTM30 (Shuttle Radar Topography Mission) elevation model 
was used. The data layers were prepared according to the 
prerequisites for the application of CONSTUD (CONSTUD, 
2009) using ArcGIS 9, Idrisi Andes, LSTATS (LSATS, 2009) 
and an original application for rasterizing the soil map. 
 
2.3 Case-based Prediction System CONSTUD  

The case-based (Aha, 1998; Remm, 2004) machine learning 
and prediction system created in the University of Tartu by 
Kalle Remm was used (more details and case studies in Linder 
et al., 2008; Remm & Remm, 2008; Remm et al., 2009; Remm 
& Remm, 2009; Tamm & Remm, 2009; CONSTUD, 2009). 
CONSTUD was used for: 1) calculating the pattern indices in 
training locations from map and image data (explanatory 
variables), 2) machine learning – iterative search for the best set 
of feature weights of the observations and the best observations 
(exemplars), 3) predictions of vegetation classes.  
 
Decisions are made on the basis of similarity between studied 
cases and predictable sites in CONSTUD. Similarity between 
observations is calculated as a weighted average of partial 
similarities of single features (further details: Linder et al., 
2008; Remm, 2004). During machine learning process, 
goodness-of-fit of predictions is estimated using leave-one-out 
cross validation (the predicted value for every observation is 
calculated using all exemplars except this particular one), and 
in the case of multinomial variable (like vegetation classes), 
Cohen’s kappa index of agreement is used to measure the 
correspondence of predictions to observations.  
 
2.4 Distance-related Similarity Correction 

Distance correction parameter (DCP) is integrated to the system 
CONSTUD to reduce the effect of spatial autocorrelation in 
training data in machine learning process. DCP regulates the 
extent of reciprocal prediction of close observations by 
decreasing the calculated similarity between observations in 
proportion to the inverse distance between them. The extent of 
decrease is regulated by DCP (in meters) chosen by the user. 
Distance correction value (DCV) is calculated as the ratio of 
DCP and distance between two observations. Then calculated 
similarity between these values is corrected. Corrected 
similarity value (CSV) is gained as calculated similarity (from 
0 to 1) minus DCV. If the distance between two observations is 
equal to or less than DCP, then CSV is set to 0 even if the 
calculated similarity is 0.9. The closer are observations, the 
higher is the rate the similarity between them is corrected. In 
this study, DCP-s from 0 to 20 000 m were tested. 
 
2.5 Calculations 

First, explanatory variables (spatial pattern indices) from image 
and map data layers were calculated. Then, 50 machine 
learning iterations were carried through in the case of each 
selected DCP in two stratified random samples generated from 
450 training observations. One of the samples was first used as 
a training sample and the other as a validation sample. Then the 
roles were exchanged and the results were averaged. 
Independent validation samples were used to give the 
estimation for the use of each particular DCP. Finally, the 
correspondences for predictions (the proportion of coincident 
observations among all observations) were calculated. 
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3. RESULTS 

The results showed that the Cohen’s kappa index of agreement 
continually decreased with the increase of the DCP-s (Figure 
2). 
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Figure 2. Kappa values gained during machine learning 

iterations of two random samples using different 
distance correction parameters (DCP-s). 

 
The correspondences of field observations and predicted values 
in machine learning followed the same trend (Figure 3). The 
reason is probably the fact that with the increase of DCP lower 
weights were attributed to successively more observations. 
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Figure 3. Line – correspondence of field observations and 

classes estimated during machine learning iterations 
(mean of two samples). White columns – 
distribution of all the distances between all 
observations (total of 50 400). Grey columns – 
distances between observations used in the last 
samples (in the case of the highest DCP – 15 000 m 
– 179 distances, i.e., 0.36% of all distances were 
comprised).  
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Figure 4. Line with dots – correspondences when estimating 

validation samples (mean of the two samples). 
Regular line – correspondences when estimating 
machine learning samples (mean of the two 

samples). White and grey columns – see Figure 3 
caption. 

 
Conversely, in the case of predictions, no considerable decrease 
in correspondences was recognized when DCP was increased 
(Figure 4). Furthermore, the lines of correspondences 
approached to each other (Figure 4, 5). 
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Figure 5. Differences between correspondences of estimated 

samples that were fitted during machine learning 
iterations and those of validation samples.  

 
Samples from within the range of spatial autocorrelation may 
be inefficiently large (e.g., unduly time-consuming), because 
observations with spatially autocorrelated values will probably 
add little independent information (Dormann et al., 2007). It 
might be suggested that into the samples of our study, the most 
useful exemplars were chosen and the less useful ones were left 
beyond by CONSTUD. As a result, dispersed and probably 
highly (spatially and thematically) representative compact 
samples of observations remained (Figure 6). The border might 
be drawn at DCP from which the number of the in-between 
distances started to decrease considerably, but the 
correspondence in validation sample estimations as well as in 
training sample estimations remained relatively stable – in this 
case, at DCP of somewhere between 8500 and 9000 m (Figure 
4). 
 
 

4. CONCLUSIONS 

Relying upon the results of this study, the use of distance 
correction parameter in case-based prediction and machine 
learning system CONSTUD gives a presumably thematically 
and spatially representative training sample which in turn 
reduces or removes the effect of autocorrelation and noise in 
data. This enables reducing the time expended on calculations 
of predictions. However, as far as only 450 observations were 
used (furthermore, these were divided into training and 
validation samples), wider interpretations could be biased. 
Using higher amount of field observations might give converse 
results, or might just increase the time for calculations. Also, 
expanding the area from where field data are gathered from 
could have unpredictable effects, due to the unique character of 
different landscape regions or for any other reason.    
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Figure 6. The effect of the use of distance correction parameter 

(DCP) in the case of coniferous forest observations 
in and around Karula National Park (within grey 
boundary line). Black dots – used exemplars, 
transparent dots – cases that turned out to be not 
very useful during machine learning iterations. 
Upper figure – DCP = 0 m, bottom figure – 
DCP = 500 m. Compared to the case when DCP was 
not used, the used exemplars are more dispersed 
(area within dashed line) (Linder et al., 2009, 
modified).  
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