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ABSTRACT: 
 
The focus of this paper is on the neural network approach to modelling origin-destination flows across geographic space. The 
novelty about neural spatial interaction models lies in their ability to model non-linear processes between spatial flows and their 
determinants, with few – if any – a priori assumptions of the data generating process. The paper draws attention to models based on 
the theory of feedforward networks with a single hidden layer, and discusses some important issues that are central for successful 
application development. The scope is limited to feedforward neural spatial interaction models that have gained increasing attention 
in recent years. It is argued that failures in applications can usually be attributed to inadequate learning and/or inadequate complexity 
of the network model. Parameter estimation and a suitably chosen number of hidden units are, thus, of crucial importance for the 
success of real world applications. The paper views network learning as an optimization problem, describes various learning 
procedures, provides insights into current best practice to optimize complexity and suggests the use of the bootstrap pairs approach 
to evaluate the model’s generalization performance. 
 
 
 
 

1. INTRODUCTION 

The development of spatial interaction models is one of the 
major intellectual achievements and, at the same time, perhaps 
the most useful contribution of spatial analysis to social science 
literature. Since the pioneering work of Wilson (1970) on 
entropy maximization, there have been surprisingly few 
innovations in the design of spatial interaction models. 
Fotheringham’s (1983) competing destinations version, 
Griffith’s eigenvector spatial filter versions1 (see Griffith 2003; 
Fischer and Griffith 2008), the spatial econometric interaction 
models2 (see LeSage and Pace 2009; LeSage and Fischer 
2010), and neural network based (briefly neural) spatial 
interaction models (see Fischer and Gopal 1994; Fischer 2002) 
are the principal exceptions. 

                                                                

 
The focus in this paper is on neural networks as efficient non-
linear tools for modelling interactions across geographic space. 
The term “neural network” has its origins in attempts to find 
mathematical representations of information processing in the 
study of natural neural systems (McCulloch and Pitts 1943; 
Rosenblatt 1962). Indeed, the term has been used very broadly 

 

                                                                

1  Eigenvector spatial filtering (see Griffith 2003) enables 
spatial autocorrelation effects to be captured, and shifts 
attention to spatial autocorrelation arising from missing 
origin and destination factors reflected in flows between 
pairs of locations. 

 
2  Note that spatial econometric interaction models are – in 

general – formally equivalent to regression models with 
spatially autocorrelated errors, but differ in terms of the data 
analysed and the manner in which the spatial weights matrix 
is defined. 

 

to include a wide range of different model structures, many of 
which have been the subject of exaggerated claims to mimic 
neurobiological reality3. As rich as neural networks are, they 
still ignore a host of biologically relevant features. From the 
perspective of applications in spatial interaction modelling, 
however, neurobiological realism is not necessary. In contrast, 
it would impose entirely unnecessary constraints. 
 
From the statistician’s point of view neural network models are 
analogous to non-parametric, non-linear regression models. The 
novelty about neural spatial interaction models lies in their 
ability to model non-linear processes with few – if any – a 
priori assumptions about the nature of the data generating 
process. We limit ourselves to models known as feedforward 
neural models4. Spatial interaction models of this kind can be 
viewed as a general framework for non-linear function 
approximation where the form of the mapping is governed by a 
number of adjustable parameters. The network inputs are 
origin, destination and separation variables, and the network 
weights the model parameters. 

 
3 Neural networks can model cortical local learning and signal 

processing, but they are not the brain, neither are many 
special purpose systems to which they contribute (Weng and 
Hwang 2006). 

 
4  Feedforward neural networks are sometimes also called 

multilayer perceptrons even though the term perceptron is 
usually used to refer to a network with linear threshold gates 
rather than with continuous non-linearities. Radial basis 
function networks, recurrent networks rooted in statistical 
physics, self-organizing systems and ART [Adaptive 
Resonance Theory] models are other important classes of 
neural networks. For a fuzzy ARTMAP multispectral 
classifier see, for example, Gopal and Fischer (1997). 
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The paper is organized as follows. The next section continues to 
provide the context in which neural spatial interaction 
modelling is considered. Neural spatial interaction models that 
have a single hidden layer architecture with K input nodes 
(typically, K=3) and a single output node are described in some 
detail in Section 3. They represent a rich and flexible class of 
universal approximators. Section 4 proceeds to view the 
problem of determining the network parameters within a 
framework that involves the solution of a non-linear 
optimization problem with an objective function that recognizes 
the integer nature of the origin-destination flows. The section 
that follows reviews some of the most important training 
(learning) procedures and modes that utilize gradient 
information for solving the problem. This requires the 
evaluation of derivatives of the objective function – known as 
error or loss function in the machine-learning literature5 – with 
respect to the network parameters. 
 
Section 6 addresses the issue of network complexity and briefly 
discusses some techniques to determine the number of hidden 
units. This problem is shown to essentially consist of 
optimizing the complexity of the neural spatial interaction 
model (complexity in terms of free parameters) in order to 
achieve the best generalization performance. Section 7 then 
moves attention to the issue of how to appropriately test the 
generalization performance of the estimated neural spatial 
interaction model. Some conclusions and an outlook for the 
future are given in the final section. 
 
 

2. CONTEXT 

Spatial interaction models of the gravity type represent a class 
of models used to explain origin-destination flows across 
geographic space. Examples include migration, journey-to-
work and shopping flows, trade and commodity flows, 
information and knowledge flows. Origin and destination 
locations of interaction represent points or areas (regions) in 
geographic space. Such models typically recognize three types 
of factors to explain mean interaction frequencies between 
origin and destination locations: (i) origin-destination variables 
that characterize the way spatial separation of origins from 
destinations constrains or impedes the interaction, (ii) origin-
specific variables that characterize the ability of the origins to 
produce or generate flows, and (iii) destination-specific 
variables that represent the attractiveness of destinations. 
 
Suppose we have a spatial system consisting of n regions, 
where i denotes the origin region ( 1  and j the 
destination region . Let  

, ..., )i =
( , )m i j ( ,i j

n
( 1, ..., )j n= 1, ..., )n=  

denote observations on random variables, say ( , )M i j , each of 
which corresponds to flows of people, commodities, capital, 
information or knowledge from region i to region j. The 

( , )M i j  are assumed to be independent random variables. 
They are sampled from a specified probability distribution that 

                                                                 
5  We will use the terms error function, loss function and cost 

function interchangeably in this paper. 

is dependent upon some mean, say ( , )i jμ . Let us assume that 
no a priori information is given about the row and column totals 
of the observed flow matrix . Then the mean 
interaction frequencies between origin i and destination j may 
be modelled by 

[ ( , )]m i j

 
 (1) ( , ) ( ) ( ) ( , 1, ...,i j C A i B j F i j i j nα βμ = =) ,

 
where ( , ) [ ( , )]i j E M i jμ =  is the expected flow, C denotes a 
constant term, the quantities ( )A i  and  are called origin 
and destination variables, respectively. 

(B j)
α  d an β  indicate their 

relative importance, and ( , )F i j  represents a distance 
deterrence function that constitutes the very core of spatial 
interaction models. Hence, a number of alternative 
specifications of ( )F ⋅  have been proposed in the literature 
(see, for example, Sen and Smith 1995, pp. 92-99). But the 
negative exponential function is the most popular choice (with 
theoretical relevance from a behavioural viewpoint): 
 

( , ) exp[ ( , )] , 1, ...,F i j d i j ni jθ= − =  (2) 
 
where θ  denotes the so-called distance sensitivity parameter 
that has to be estimated.  
 
Inserting Eq. (2) into Eq. (1) yields the well known class of 
exponential spatial interaction models that can be expressed 
equivalently as a log-additive model of the form 
 

( , ) ( ) ( ) ( , )Y i j a i b j i j( , )d i jκ α β θ ε= + + ++  (3) 
 
where ( , ) log[ ( , )]Y i j i jμ≡ , , logC≡κ ( ) log[ ( )]a i A i≡  
and ( ) log[ ( )]b j B j≡ . Of note is that the back transformation 
of this log-linear specification results in an error structure of the 
exponential spatial interaction model being multiplicative. The 
parameters κ , α , β  and θ  have to be estimated if future 
flows are to be predicted. 
 
There are  equations of the form (3). Using matrix notation 
we may write these equations more compactly as 

2n

 
Y X θ ε= +   (4) 
 
where Y denotes the  vector of observations on the 
interaction variable, with

-by-1N
N 2n=  (see Table 1 for the data 

organization convention). X is the N-by-4 matrix of 
observations on the explanatory variables including the origin, 
destination, separation variables, and the intercept. θ  is the 
associated 4-by-1 parameter vector, and the N-by-1 vector 

 denotes the vectorized form of [ (1,1), ..., [ ,n nε ε ε=
[ ( , )]i j

)]T

ε . 
 
If the spatial interaction model given by Eq. (4) is correctly 
specified, then provided that the regressor variables are not 
perfectly collinear, θ  is estimable under the assumption that 
the error terms are iid with zero mean and constant variance, 
and the OLS estimator is the best linear unbiased estimator. A 
violation of these assumptions may lead to spatial 
autocorrelation.  
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It is noteworthy that the above spatial interaction model can not 
guarantee that the predicted flows when summed by rows or 
columns of the spatial interaction data matrix will necessarily 
have the property to match observed totals leaving the origins i 

 or terminating at the destinations j ( 1, ..., )i = n n( 1, ..., )j =  
in the given spatial interaction system. If the outflow totals for 
each origin zone and/or the inflow totals into each destination 
zone are a priori known, then the log-linear model given by Eq. 
(4) would need to be modified to incorporate the explicitly 
required constraints to match exact totals. Imposing origin 
and/or destination constraints leads to so-called production-
constrained, attraction-constrained and production-attraction-
constrained spatial interaction models that may be convincingly 
justified using entropy maximizing methods (see Wilson 1967). 
 

 
Dyad  
Label 

IDorigin IDdestination Flow Origin 
Variable 

Destination 
Variable 

Separation  
(Origin,  

Destination) 

1 1 1 Y(1, 1) a(1) b(1) d(1, 1) 
2 2 1 Y(2, 1) a(2) b(1) d(2, 1) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

n n 1 Y(n, 1) a(n) b(1) d(n, 1) 
n+1 1 2 Y(1, 2) a(1) b(2) d(1, 2) 
n+2 2 2 Y(2, 2) a(2) b(2) d(2, 2) 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

2n n 2 Y(n, 2) a(n) b(2) d(n, 2) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

(n-1)n 1 n Y(1, n) a(1) b(n) d(1, n) 
(n-1)n+1 2 n Y(2, n) a(2) b(n) d(2, n) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

n2 n n Y(n, n) a(n) b(n) d(n, n) 

 
Table 1. Data organization convention 

 
Moreover, note that this widely used log-normal specification 
of the spatial interaction model has several shortcomings6. 
Most importantly, it suffers from least-squares and normality 
assumptions that ignore the true integer nature of the flows and 
approximate a discrete-valued process by an almost certainly 
misrepresentative continuous distribution. 
 
 

3. FEEDFORWARD NEURAL SPATIAL 
INTERACTION MODELS 

Neural spatial interaction models represent the most recent 
innovation in the design of spatial interaction models. For 
concreteness and simplicity, we consider neural spatial 
interaction models based on the theory of single hidden layer 
feedforward networks. Single hidden layer feedforward neural 
networks consist of nodes (also known as processing units or 
simply units) that are organized in layers. Figure 1 shows a 

                                                                 
6 Flowerdew and Aitkin (1982), for example, question the 

appropriateness of this model specification, and suggest 
instead that the observed flows follow a Poisson distribution, 
leading to models termed Poisson spatial interaction models. 

schematic diagram of a typical feedforward neural spatial 
interaction model containing a single intermediate layer of 
processing units separating input from output units. 
Intermediate layers of this sort are called hidden layers to 
distinguish them from the input and output layers. In this 
network there are three input nodes representing the origin, 
destination and separation variables (denoted by 1 2 3, ,x x x ); H 
hidden units (say 1, ..., Hz z ) representing hidden summation 
units (denoted by the symbol ); and one (summation) 
output node representing origin-destination flows. Weight 
parameters are represented by links between the nodes. Observe 
the feedforward structure where the inputs are connected only 
to units in the hidden layer, and the outputs of this layer are 
connected only to the output layer that consists of only one 
unit. 

ΣΣ  

 
Any network diagram can be converted into its corresponding 
mapping function, provided that the diagram is feedforward as 
in Fig. 1 so that it does not contain closed directed cycles7. This 
guarantees that the network output can be described by a series 
of functional transformations as follows. First, we form a linear 
combination8 of the K input variables 1, ..., Kx x  (typically 
K=3) to get the input, say , that hidden unit h receives hnet
 

(1) (1)

1

K

h hk k
k

net w x w
=

= +∑ ho

H

 (5) 

 
for 1,..., .h =  The superscript (1) indicates that the 
corresponding parameters are in the first parameter layer of the 
network. The parameters  represent connection weights 
going from input k 

(1)
hkw

( 1k ,..., )K=  to hidden unit h 
( 1,..., ),h H=  and  is a bias(1)

how 9.  
 
These quantities, , are known as activations in the field of 
neural networks. Each of them is then transformed using a non-
linear transfer or activation function

hnet

10 ϕ  to give the output 

                                                                 
7  Networks with closed directed cycles are called recurrent 

networks. There are three types of such networks: first, 
networks in which the input layer is fed back into the input 
layer itself; second, networks in which the hidden layer is 
fed back into the input layer, and third, networks in which 
the output layer is fed back into the input layer. These 
feedback networks are useful when input variables represent 
time series. 

 
8  Note, we could alternatively use product rather than 

summation hidden units to supplement the inputs to a neural 
network with higher-order combinations of the inputs to 
increase the capacity of the network in an information 
capacity sense. These networks are called product unit rather 
than summation unit networks (see Fischer and Reismann 
2002b). 

 
9  This term should not be confused with the term bias in a 

statistical sense. 
 
10  The inverse of this function is called link function in the 

statistical literature. Note that radial basis function networks 
may be viewed as single hidden layer networks that use 
radial basis function nodes in the hidden layer. This class of 
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( )h hz netϕ=    (6) 

 
for  These quantities are again  linearly combined 
to generate the input, called , that the output unit receives 

1,..., .h = H
net

 
(2) (2)

1

H

h h o
h

net w z w
=

= +∑ . (7) 

 
The superscript  indicates that the corresponding parameters 
are in the second parameter layer of the network. The 
parameters  represent the connection weights from hidden 
units h  to the output unit, and  is a bias 
parameter. Finally,  is transformed to produce the output 

(2)

)

...,

(2
hw
1,h =( )H

net
)

(2)
ow

(netψ , where ψ  denotes an activation function of the output 
unit. 
 
Information processing in such networks is, thus, 
straightforward. The input units just provide a ‘fan-out’ and 
distribute the input to the hidden units. These units sum their 
inputs, add a constant (the bias) and take a fixed transfer 
function hϕ  of the result. The output unit is of the same form, 
but with output activation function ψ . Network output can 
then be expressed in terms of an output function 
 

 (8) (2) (1) (1) (2)
0 0

1 1
( , )

H K

H h h hk k k
h k

x w w w x w wφ ψ ϕ
= =

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ +

 
where the expression ( , )H x wφ  is a convenient short-hand 
notation for the model output since this depends only on inputs 
and weights. Vector  1( , ..., )Kx x= x  is the input vector and w 
represents the vector of all the weights and bias terms. ( )ϕ ⋅  is 
a non-linear [generally sigmoid] hidden layer activation 
function and ( )ψ ⋅  an output unit [often quasi-linear] activation 
function, both continuously differentiable of order two on � . 
The function φ  is explicitly indexed by the number of hidden 
units, H, in order to indicate the dependence, but will be 
dropped for convenience. 
 
Note that the bias terms  and  in Eq. (8) can be 
absorbed

(1)
0kw (2)

0w
11 into the set of weight parameters by defining 

additional input and hidden unit variables, 0 and ,0x z
0d 1.z =

 whose 
values are clamped at one so that  Then the 
network function given by Eq. (8) becomes 

0 1 anx =

 

(2) (1)

0 0

H K

H h h hk
h k

w w xφ ψ ϕ
= =

⎡ ⎤⎛ ⎞= ⎢ ⎜
⎝ ⎠⎣ ⎦

∑ ∑ k ⎥⎟

                                                                                                      

. (9) 

 

model as defined by E
 

neural networks asks for a two stage approach for training. 
In the first stage the parameters of the basis functions are 
determined, while in the second stage the basis functions are 
kept fixed and the second layer weights are found (see 
Bishop 1995, 170 pp.). 

 
11  This is the same idea as incorporating the constant term in 

the design matrix of a regression by inserting a column of 
ones. 

 

 
The main power of neural spatial interaction models accrues 
from their capability for universal function approximation. 
Cybenko (1989); Funahashi (1989); Hornik, Stinchcombe and 
White (1989) and many others have shown that single hidden 
layer neural networks such as those given by Eq. (9) can 
approximate arbitrarily well any continuous function. 
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Figure 1. Network diagram of the neural spatial interaction 
q. (8), for K=3 (bias units deleted) 

Neural spatial interaction modelling involves three major stages 
(Fischer and Gopal 1994): 
 
• The first stage consists of the identification of a model 

candidate from the general class of neural spatial interac-
tion models of type (9). This involves both the specifica-
tion of appropriate transfer functions ψ and ϕ, and the 
number, H, of hidden units. 

 
• The second stage involves solving the network training 

[network learning, parameter estimation] problem, and 
hence determines the optimal set of model parameters 
where optimality is defined in terms of an error [loss, per-
formance] function. 

 
• The third stage is concerned with testing and evaluating 

the out-of-sample [generalization] performance of the 
chosen model.  

 
Both the theoretical and practical side of the model selection 
problem have been intensively studied (see Fischer 2001, 2000 
among others). The standard approach for finding a good neural 
spatial interaction model is to split the available set of samples 
into three subsets: training, validation and test sets. The training 
set is used for parameter estimation. In order to avoid 
overfitting, a common procedure is to use a network model with 
sufficiently large H for the task at hand, to monitor – during 
training – the out-of-sample performance on a separate 
validation set, and finally to choose the model that corresponds 
to the minimum on the validation set, and employ it for future 
purposes such as the evaluation on the test set. 
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4. A RATIONALE FOR THE ESTIMATION 

APPROACH 

If we view a neural spatial interaction model as generating a 
family of approximations (as w ranges over W, say) to an 
unknown spatial interaction function, then we need a way to 
pick a best approximation from this family. This is the function 
of network learning or network training which might be viewed 
as an optimization problem12. 
 
We develop a rationale for an appropriate objective (loss or 
cost) function for this task. Following Rumelhart et al. (1995) 
we propose that the goal is to find that model which is the most 
likely explanation of the observed data set, say D. We can 
express this as attempting to maximize the term 
 

( ) ( ) ( )
( )

| ( ) ( )
( ) |

P D w P w
P w D

P D
φ φ

φ =  (10) 

 
where φ  represents the neural spatial interaction model (with 

 denoting the vector of  weights) in question. w ( )| ( )P D wφ  
is the probability that the model would have produced the 
observed data D. Since sums are easier to work with than 
products, we will maximize the log of this probability, and 
since the log is a strictly monotonic transformation, maximizing 
the log is equivalent to maximizing the probability itself. In this 
case we have 
 

( )( )
( )( ) ( )( ) ( )

log |

log | log log .

P w D

P D w P w P D

φ

φ φ

=

+ −
 (11) 

 
The probability of the data, , is not dependent on the 
model. Thus, it is sufficient to maximize 

( )P D

( )( )( )( )log | logP D w Pφ + wφ . The first of these terms 
represents the probability of the data given the model, and 
hence measures how well the neural network model accounts 
for the data. The second term is a representation of the model 
itself; that is, it is a priori probability, that can be utilized to get 
information and constraints into the learning procedure. 
 
We focus solely on the first term, the performance, and begin 
by noting that the data can be broken down into a set of 
observations, , each u  we 
will assume to be chosen independently of the others. Hence we 
can write the probability of the data given the model as  

( ){ }, : 1,...,u u uD q x y u U= = = q

 

                                                                 
12  This directs attention to the literature on numerical 

optimization theory, with particular reference to 
optimization techniques that use higher-order information 
such as conjugate gradient procedures and Newton’s 
method. The methods use the gradient vector (first-order 
partial derivatives) and/or the Hessian matrix (second-order 
partial derivatives) of the loss function to perform 
optimization, but in different ways. A survey of first-order 
and second-order optimization techniques applied to 
network training can be found in Cichocki and Unbehauen 
(1993). 

( )( )
( )( ) ( )(

log |

log | log | .u u
uu

P D w

P q w P q w

φ

φ

=

= ∑∏ )φ
 (12) 

 
Note that this assumption permits to express the probability of 
the data given the model as the sum of terms, each term 
representing the probability of a single observation given the 
model. We can still take another step and break the data into 
two parts: the observed input data ux  and the observed target 
data . Therefore we can write uy
 

( )( )
( )( ) ( )

log

log and log .u u uu
u u

P D w

P y x  w P x

φ

 φ

=

+∑ ∑
 (13) 

 
Since we assume that ux  does not depend on the model, the 
second term of the right hand side of the equation will not 
affect the determination of the optimal model. Thus, we need 
only to maximize the term ( )( )log | andu u uu

P y x wφ∑ . 
 
Up to now we have – in effect – made only the assumption of 
the independence of the observed data. In order to proceed, we 
need to make some more specific assumptions, especially about 
the relationship between the observed input data ux  and the 
observed target dat uy , a probabilistic assumption. We 
assume that the relationship etween u

a 
b  x  and uy  is not 

deterministic, but that for any given ux  there is a distribution 
of possible values of uy . But the model is deterministic, so 
rather than attempting to predict the actual outcome we only 
attempt to predict the expecte  value o uy  given ud  f x . 
Therefore, the model output is to be interpreted as the mean 
bilateral interaction frequencies (that is, those from the location 
of origin to the location of destination). This is, of course, the 
standard assumption. 
 
To proceed further, we have to specify the form of the 
distribution of which the model output is the mean. Of 
particular interest to us is the assumption that the observed data 
is the realization of a sequence of independent Poisson random 
variables. Under this assumption we can write the probability of 
the data given the model as 
 

( )( ) ( ) ( )( )exp
and

!

uy

u
u u u

u u

w w
P y x w

y
φ φ

φ
−

= ∏ u  (14) 

 
and, hence, define a maximum likelihood estimator as a 
parameter vector  which maximizes the log-likelihood L ŵ
 

( )

[ ]

max , ,

max log ( ) ( ) log( !) .
w W

u u u uuw W

L x y w

y w w yφ φ
∈

∈

=

− −∑
 (15) 

 
Instead of maximizing the log-likelihood it is more convenient 
to view learning as solving the minimization problem 
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( ) (min , , min , ,
w W w W

)x y w L x y wλ
∈ ∈

= −⎡⎣ ⎤⎦  (16) 

 
where the loss (cost) function λ  is the negative log-likelihood 
L. λ  is continuously differentiable on the Q-dimensional real 
parameter space ( ) which is a finite 
dimensional closed bounded domain and, thus, compact.  

1Q H H +K= +

 
 

5. LEARNING MODES AND PROCEDURES 

It can be shown that  assumes its weight minimum under 
certain conditions, but characteristically there exist many 
minima in real world applications all of which satisfy 

( )wλ

 
( ) 0wλ∇ =   (17) 

 
where ∇λ denotes the gradient of λ. The minimum for which 
the value of λ is smallest is termed the global minimum and 
other minima are called local minima.  
 
There are many ways to solve the minimization problem (16). 
Closed-form optimization via the calculus of scalar fields rarely 
admits a direct solution. A relatively new set of interesting 
techniques that use optimality conditions from calculus are 
based on evolutionary computation (Goldberg 1989; Fogel 
1995). But gradient procedures which use the first partial 
derivatives ( ),wλ∇  so-called first order strategies, are most 
widely used. Gradient search for solutions gleans its 
information about derivatives from a sequence of function 
values. The recursion scheme is based on the formula13 
 

( 1) ( ) ( ) ( )w w dτ τ η τ τ+ = +  (18) 
 
where τ  denotes the iteration step. Different procedures differ 
from each other with regard to the choice of step length ( )η τ  
and search direction ( )d τ , the former being a scalar called 
learning rate and the latter a vector of unit length. 
 
The simplest approach to using gradient information is to 
assume ( )η τ  being constant and to choose the parameter 
update in Eq. (18) to comprise a small step in the direction of 
the negative gradient so that 
 

( ) ( ( ))d wτ λ τ= −∇ . (19) 
 
After each such update, the gradient is re-evaluated for the new 
parameter vector .( 1)w τ +

.

 Note that the loss function is 
defined with respect to a training set of size U1, say 1  to be 
processed to evaluate 

,UD
λ∇  One complete presentation of the 

entire training set during the training process is called an epoch. 
The training process is maintained on an epoch-by-epoch basis 
until the connection weights and bias terms of the network 

                                                                 

w

13  When using an iterative optimization algorithm, some choice 
has to be made of when to stop the training process. There 
are various criteria that might be used. For example, learning 
may be stopped when the loss function or the relative 
change in the loss function falls below a prespecified value. 

stabilize and the average error over the entire training set 
converges to some minimum. 
 
Gradient descent optimization may proceed in one of two ways: 
pattern mode and batch mode. In the pattern mode weight 
updating is performed after the presentation of each training 
example. Note that the loss functions based on maximum 
likelihood for a set of independent observations comprise a sum 
of terms, one for each data point. Thus 
 

1
1 1

( ) ( )u
u U

wλ λ
∈

= ∑  (20) 

 
where 1uλ  is called the local error (loss) while λ  the global 
error (loss), and pattern based gradient descent makes an 
update to the parameter vector based on one training example at 
a time so that 
 

1( 1) ( ) ( ( ))uw w w .τ τ η λ τ+ = − ∇  (21) 
 
Rumelhart et al. (1986) have shown that pattern based gradient 
descent minimizes Eq. (16), if the learning parameter η  is 
sufficiently small. The smaller η , the smaller will be the 
changes to the weights in the network from one iteration to the 
next and the smoother will be the trajectory in the parameter 
space. This improvement, however, is attained at the cost of a 
slower rate of training. If we make the learning rate parameter 
η  too large so as to speed up the rate of training, the resulting 
large changes in the parameter weights assume such a form that 
the network may become unstable. 
 

In the batch mode of learning, parameter updating is performed 
after the presentation of all the training examples that constitute 
an epoch. From an online operational point of view, the pattern 
mode of training is preferred over the batch mode, because it 
requires less local storage for each weight connection. 
Moreover, given that the training patterns are presented to the 
network in a random manner, the use of pattern-by pattern 
updating of parameters makes the search in parameter space 
stochastic in nature which in turn makes it less likely to be 
trapped in a local minimum. On the other hand, the use of batch 
mode of training provides a more accurate estimation of the 
gradient vector .λ∇  Finally, the relative effectiveness of the 
two training modes depends on the problem to be solved 
(Haykin 1994, 152 pp.) 
 
For batch optimization there are more efficient procedures, such 
as conjugate gradient and quasi-Newton methods, that are much 
more robust and much faster than gradient descent (Nocedal 
and Wright 1999). Unlike steepest gradient, these algorithms 
have the characteristic that the error function always decreases 
at each iteration unless the parameter vector has arrived at a 
local or global minimum. Conjugate gradient methods achieve 
this by incorporating an intricate relationship between the 
direction and gradient vectors. The initial direction vector 

 is set equal to the negative gradient vector at the initial 
step 

(0)d
0.τ =  Each successive direction vector is then computed 
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as a linear combination of the current gradient vector and the 
previous direction vector. Thus,  
 

( 1) ( ( 1)) ( ) ( )d w dτ λ τ γ τ τ+ = −∇ + +  (22) 
 
where ( )γ τ  is a time varying parameter. There are various 
rules for determining ( )γ τ  in terms of the gradient vectors at 
time τ  and 1τ + , leading to the Fletcher-Reeves and Polak-
Ribière variants of conjugate gradient algorithms (see Press et 
al. 1992). The computation of the learning rate parameter ( )η τ  
in the update formula given by Eq. (18) involves a line search, 
the purpose of which is to find a particular value of η  for 
which the loss function ( ( ) ( ))w dλ τ η τ+ is minimized, given 
fixed values of (w )τ  and ( ).d τ  
 
The application of Newton’s method to the training of neural 
networks is hindered by the requirement of having to calculate 
the Hessian matrix and its inverse, which can be 
computationally expensive for larger network models14. The 
problem is further complicated by the fact that the Hessian 
matrix has to be non-singular for its inverse to be computed. 
Quasi-Newton methods avoid this problem by building up an 
approximation to the inverse Hessian over a number of iteration 
steps. The most commonly variants are the Davidson-Fletcher-
Powell and the Broyden-Fletcher-Goldfarb-Shanno procedures 
(see Press et al. 1992). 
 
Quasi-Newton procedures are today the most efficient and 
sophisticated (batch) optimization algorithms. But they require 
the evaluation and storage in memory of a dense matrix at each 
iteration step .τ  For larger problems (more than 1,000 weights) 
the storage of the approximate Hessian can be too demanding. 
In contrast, the conjugate gradient procedures require much less 
storage, but an exact determination of the learning rate ( )η τ  
and the parameter ( )γ τ  in each iteration ,τ  and, thus, 
approximately twice as many gradient evaluations as the quasi-
Newton methods. 
 
When the surface modelled by the loss function in its parameter 
space is extremely rugged and has many local minima, then a 
local search from a random starting point tends to converge to a 
local minimum close to the initial point. In order to seek out 
good local minima, a good training procedure must thus include 
both a gradient based optimization algorithm and a technique 
like random start that enables sampling of the space of minima. 
Alternatively, stochastic global search procedures might be 
used. Examples of such procedures include Alopex (see 
Fischer, Reismann and Hlavácková-Schindler 2003), genetic 
algorithms (see Fischer and Leung 1998), and simulated 
annealing. These procedures guarantee convergence to a global 
solution with a higher probability, but at the expense of slower 
convergence. 
 
Finally, it is worth noting that the technique of error 
backpropagation provides a computationally efficient technique 
to calculate the gradient vector of a loss function for a 
                                                                 

                                                                

14  Note that computational time rises with the square of Q, the 
dimension of the parameter space. 

feedforward neural network with respect to the parameters. This 
technique – sometimes simply termed backprop – uses a local 
message passing scheme in which information is sent 
alternately forwards and backwards through the network. Its 
modern form stems from Rumelhart, Hinton and Williams 
(1986), illustrated for gradient descent optimization applied to 
the sum-of-squares error function. It is important to recognize, 
however, that error backpropagation can also be applied to our 
loss function and to a wide variety of optimization schemes for 
weight adjustment other than gradient descent, both in pattern 
or batch mode. 
 
 

6. NETWORK COMPLEXITY 

So far we have considered neural spatial interaction models of 
type (9) with a priori given numbers of input, hidden and 
output units. While the number of input and output units is 
basically problem dependent, the number H of hidden units is a 
free parameter that can be adjusted to provide the best testing 
performance on independent data, called testing set. But the 
testing error is not a simple function of H due to the presence of 
local minima in the loss function. The issue of finding a 
parsimonious model for a real world problem is critical for all 
models but particularly important for neural networks because 
the problem of overfitting is more likely to occur. 
 
A neural spatial interaction model that is too simple (i.e. small 
H), or too inflexible, will have a large bias and smooth out 
some of the underlying structure in the data (corresponding to 
high bias), while one that has too much flexibility in relation to 
the particular data set will overfit the data and have a large 
variance. In either case, the performance of the network model 
on new data (i.e. generalization performance) will be poor. This 
highlights the need to optimize the complexity in the model 
selection process in order to achieve the best generalization 
(Bishop 1995, p. 332; Fischer 2000). There are some ways to 
control the complexity of a neural network model, complexity 
in terms of the number of hidden units or, more precisely, in 
terms of the independently adjusted parameters. Practice in 
neural spatial interaction modelling generally adopts a trial and 
error approach that trains a sequence of neural networks with an 
increasing number of hidden units and then selects that one 
which gives the best predictive performance on a testing set15.  
 
There are, however, other more principled ways to control the 
complexity of a neural network model in order to avoid 
overfitting16. One approach is that of regularization, which 
involves adding a regularization term  to the loss ( )R w

 
15  Note that limited data sets make the determination of H 

more difficult if there is not enough data available to hold 
out a sufficiently large independent test sample. 

 
16  A neural network is said to be overfitted to the data if it 

obtains an excellent fit to the training data, but gives a poor 
representation of the unknown function which the neural 
network is approximating. 
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function in order to control overfitting, so that the total error 
function to be minimized takes the form 
 

( ) ( ) ( )w w Rλ λ μ= +%
p pp w  (23) 

 
where μ  is a positive real number, the so-called regularization 
parameter, that controls the relative importance of the data 
dependent error ( )wλpp , and  the regularization term, 
sometimes also called complexity term. This term embodies the 
a priori knowledge about the solution, and therefore depends 
on the nature of the particular problem to be solved. Note that 

 is called the regularized error or loss function. 

( )R w

(wλ%p )
 
One of the simplest forms of a regularizer is defined as the 
squared Euclidean norm of the parameter vector w in the 
network, as given by 
 

2( ) .R w w=   (24) 
 
This regularizer17 is known as weight decay function that 
penalizes larger weights. Hinton (1987) has found empirically 
that a regularizer of this form can lead to significant 
improvements in network generalization. 
 
Sometimes, a more general regularizer is used, for which the 
regularized error or loss takes the form 
 

( ) mw wλ μ+  (25) 
 
where m=2 corresponds to the quadratic regularizer given by 
Eq. (24). The case m=1 is known as the ‘lasso’ in the statistics 
literature (Tibshirani 1996). The regularizer given by Eq. (25) 
has the property that – if μ  is sufficiently large – some of the 
parameter weights are driven to zero in sequential learning 
algorithms, leading to a sparse model. As μ  is increased, so an 
increasing number of parameters are driven to zero.  
 
One of the limitations of this regularizer is inconsistency with 
certain scaling characteristics of network mappings. If one 
trains a network using original data and one network using data 
for which the input and/or target variables are linearly 
transformed, then consistency requires that the regularizer 
should be invariant to re-scaling of the weights and to shifts of 
the biases (Bishop 2006, p. 258). A regularized loss function 
that satisfies this property is given by 
 

1 1 2 2( )
m

qw w wλ μ μ+ +
m

q  (26) 

 
where 1 2,μ μ

(1)
1., ,...,hw w

(2),..., ,.w w

 and m are regularization parameters. 1   
denotes the set of the weights in the first parameter layer, that is 

 and  those in the second layer, that 
is  

qw

(1) (1)
11 ,.. ,Hw

(2) (2)
1 ..,h H

K
.w

2qw

 

                                                                 
17  In conventional curve fitting, the use of this regularizer is 

termed ridge regression. 
 

The more sophisticated control of complexity that 
regularization offers over adjusting the number of hidden units 
by trial and error is evident. Regularization allows complex 
neural network models to be trained on data sets of limited size 
without severe overfitting, by limiting the effective network 
complexity. The problem of determining the appropriate 
number of hidden units is, thus, shifted to one of determining a 
suitable value for the regularization parameter(s) during the 
training process. 
 
The principal alternative to regularization as a way to optimize 
the model complexity for a given training data set is the 
procedure of early stopping. As we have seen in the previous 
sections, training of a non-linear network model corresponds to 
an iterative reduction of the loss (error) function defined with 
respect to a given training data set. For many of the 
optimization procedures used for network training (such as 
conjugate gradient optimization) the error is a non-decreasing 
function of the iteration steps .τ  But the error measured with 
respect to independent data, called validation data set, say 

, often shows a decrease first, followed by an increase as 
the network starts to overfit, as illustrated in Fischer and Gopal 
(1994). Thus, training can be stopped at the point of smallest 
error with respect to the validation data, in order to get a 
network that shows good generalization performance. But, if 
the validation set is mall, it will give a relatively noisy estimate 
of generalization performance, and it may be necessary to keep 
aside another data set, the test set , on which the 
performance of the network model is finally evaluated. 

2UD

3UD

 
This approach of stopping training before a minimum of the 
training error has been reached is another way of eliminating 
the network complexity. It contrasts with regularization because 
the determination of the number of hidden units does not 
require convergence of the training process. The training 
process is used here to perform a directed search in the weight 
space for a neural network model that does not overfit the data 
and, thus, shows superior generalization performance. Various 
theoretical and empirical results have provided strong evidence 
for the efficiency of early stopping (see, for example, Weigend, 
Rumelhart and Huberman 1991; Baldi and Chauvin 1991; 
Finnoff 1991; Fischer and Gopal 1994). Although many 
questions remain, a picture is starting to emerge as to the 
mechanisms responsible for the effectiveness of this approach. 
In particular, it has been shown that stopped training has the 
same sort of regularization effect [i.e. reducing model variance 
at the cost of bias] that penalty terms provide. 
 
 

7. GENERALIZATION PERFORMANCE 

Model performance may be measured in terms of Kullback and 
Leibler’s (1951) information criterion, KLIC, which is a natural 
performance criterion for the goodness-of-fit of ML estimated 
models 
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 (27) 

 
where ( 3 3,u ux y  denotes the u3-th pattern of the data set 

3U , and  D φ  is the estimated neural spatial interaction model 
under consideration. 
 
The standard approach to evaluate the out-of-sample 
(generalization or prediction) performance of a neural spatial 
interaction model (see Fischer and Gopal 1994) is to split the 
data set D of size U into three subsets: the training [in-sample] 
set  of size , the internal validation 
set 2 2 2 2  of size  and the testing [out-
of-sample, generalization, prediction] set 

3 3 3 3  of size , with U1+U2+U3=U. 
The training set serves for parameter estimation. The validation 
set is used to determine the stopping point before overfitting 
occurs, and the test set to evaluate the generalization 
performance of the model, using some measure of error 
between a prediction and an observed value, such as 

. 

1 1 1 1{ ( , )U u u uD q x y= =
{ ( ,U u u uD q x y= =

{ ( , )}U u u uD q x y= =

( )3UKLIC D

}
}

1U
2U

3U

)

 
Randomness enters into this standard approach to neural 
network modelling in two ways: in the splitting of the data 
samples, and in choices about the parameter initialization. This 
leaves one question wide open. What is the variation of test 
performance as one varies training, validation and test sets? 
This is an important question, since there is not just one ‘best’ 
split of the data or obvious choice for the initial weights. Thus, 
it is useful to vary both the data partitions and parameter 
initializations to find out more about the distribution of 
generalization errors. One way is to use the bootstrap pairs 
approach (Efron 1982) with replacement to evaluate the 
performance, reliability, and robustness of the neural spatial 
interaction model. 
 
The bootstrap pairs approach18 is an intuitive way to apply the 
bootstrap notion to combine the purity of splitting the data set 
into three data sets with the power of a resampling procedure. 
The basic idea of this approach is to generate B pseudo-
replicates of the training sets 1

b
UD∗ , B internal validation sets 

2  and B testing sets 3 , then to re-estimate the model 
parameters  on each training bootstrap sample 1

b
UD∗ b

UD∗

ˆ bw∗ b
uq∗ , to stop 

training on the basis of the associated validation bootstrap 
sample 2u  and to test generalization performance, measured in 
terms of KLIC, on the test bootstrap sample 

bq∗

3
b

uq∗ . In this 

                                                                 

( , )q x y=

18  This approach contrasts to residuals bootstrapping that 
treats the model residuals rather than u u u as the 
sampling units and creates a bootstrap sample by adding 
residuals to the model fit. In this latter case bootstrapping 
distribution is conditional on the actual observations. 

bootstrap world, the empirical bootstrap distribution of the 
performance measure can be estimated, pseudo-errors can be 
computed, and used to approximate the distribution of the real 
errors. The approach is appealing, but characterized by very 
demanding computational intensity in real world contexts (see 
Fischer and Reismann 2002b for an application). Implementing 
the approach involves the following steps: 
 
Step 1: Conduct totally independent re-sampling operations, 

where 
 

(i) B independent training bootstrap samples are 
generated, by randomly sampling U1 times 
(U1<U), with replacement, from D for b=1, …, B 

 

 ( ){ }1 1 1 1,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = , (28) 

 
(ii) B independent validation bootstrap samples are 

generated [in the case of early stopping only], by 
randomly sampling U2 times (U2<U), with 
replacement, from D so that for b=1, …, B 

 

 ( ){ }2 2 2 2,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = , (29) 

 
(iii)  B independent test bootstrap samples are 

generated, by randomly sampling U3 times 
(U3<U), with replacement, from D so that for 
b=1, …, B 

 

 ( ){ }3 3 3 3,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = . (30) 

 

Step 2: Use each training bootstrap sample  to compute 
the bootstrap parameter estimates  by solving Eq. 
(16) with 

1
b

uq∗

b∗ŵ
1
b

uq∗  replacing : uq
 

 ( ){ }1ˆ arg min , :b b b b
uw q w w Wλ∗ ∗ ∗ ∗= ∈ Q⊆ � (31) 

 
 where Q is the number of parameters, and 
 

 . (32) ( ) [ ]
1

1 1 1
1 1

, ln ( )
U

b b
u u u

u

q w y w wλ φ∗ ∗

=

= −∑ 1( )uφ

)

 
 Note: During the training process the generalization 

performance of the model (in terms of the KLIC 
criterion) is monitored on the corresponding bootstrap 
validation set, in the case of early stopping. The 
training process is stopped if the validation error 
starts to increase. 

 
Step 3: Calculate the KLIC-statistic   for each 

test bootstrap sample. 
3( b

UKLIC D∗

 
Step 4: Replicate Steps 3-4 many times, say B=100 or 

B=1,000. 
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Step 5: The statistical accuracy of the generalization 
performance statistic can then be evaluated by 
looking at the variability of the statistic between the 
different bootstrap test sets. Estimate the standard 
deviation σ̂  of the statistic as approximated by 
bootstrap 

 

 
� ( ) � ( )

1
22
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1

ˆ

1
1

B

B b b
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b
KLIC D KLIC

B
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∗ ∗∗

=

=

⎧ ⎡ − ⋅⎨ ⎢⎣−⎩
∑ ⎫⎤ ⎬⎥⎦ ⎭
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 with 
 

 . (34) � ( ) � ( 3
1

B b b
U

b

KLIC KLIC D
∗ ∗ ∗

=

⋅ = ∑

 
The true standard error of �KLIC  is a function of the unknown 
density function, say F, of KLIC, that is ( )Fσ . With the 
bootstrapping approach described above one obtains 3ÛF ∗ , 
which is supposed to describe closely the empirical distribution 

3
ˆ ,UF  in other words 3 3U  Asymptotically, this 

means that the sample size tends to infinity, i.e. , the 
estimate 

ˆ( )Fˆ B
Uσ σ≈ .

3U → ∞
ˆ Bσ  tends to ( ).Fσ  For finite sample sizes, however, 

there will be deviations in general. 
 
 

8. CLOSING REMARKS 

In this paper a modest attempt has been made to provide a 
unified framework for neural spatial interaction modelling, 
based upon maximum likelihood estimation under distributional 
assumptions of Poisson processes. In this way we avoid the 
weaknesses of least squares and normality assumptions that 
ignore the true integer nature of the origin-destination flows and 
approximate a discrete-valued process by an almost certainly 
misrepresentative continuous representation. 
 
Randomness enters in two ways in neural spatial interaction 
modelling: in the splitting of the data set into training, 
validation and test sets on the one side, and in choices about 
parameter initialization on the other. The paper suggests the 
bootstrapping pairs approach to evaluate the performance, 
reliability and robustness of neural spatial interaction models. 
The approach is attractive, but computationally intensive. 
 
Despite significant improvements in our understanding of the 
fundamentals and principles of neural spatial interaction 
modelling, there are many open problems and directions for 
future research. The design of a neural network approach suited 
to deal with the doubly constrained case of spatial interaction, 
for example, is still missing. Finding good global optimization 
procedures for solving the non-convex learning problems is still 
an important issue for further research even though some 
relevant work can be found in Fischer, Hlavácková-Schindler 
and Reismann (1999). Also the model identification problem 
deserves further attention to come up with techniques that go 
beyond the current rules of thumb. 

From a spatial analytic perspective an important avenue for 
further investigation is the explicit incorporation of spatial 
dependency in the network representation that received less 
attention in the past than it deserves. Another is the application 
of Bayesian inference techniques to neural networks. A 
Bayesian approach would provide an alternative framework for 
dealing with issues of network complexity and would avoid 
many of the problems discussed in this paper. In particular, 
confidence intervals could easily be assigned to the predictors 
generated by neural spatial interaction models, without the need 
of bootstrapping. 
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