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ABSTRACT:

Many objects in space can best be modeled statistically by using point processes. Examples are fires in an urban environment, herds of
animals in large areas, earthquakes and forest fires and large speckles on a radar image. Modern developments in point process theory
now much better than before allow us to make statistical models to explain the observed patterns. In this paper, we will address the
way that point processes can be modeled in space and time. The first application draws from domestic fires at the city level, where we
apply a statistical point pattern analysis to derive major causes from related layers of information. The second application considers
earthquakes as a marked point process. For earthquakes, large and complex data sets exist including many possibly relevant covariates
that may influence their occurrence. The Strauss point process model is explored to analyze earthquake data in Pakistan recorded since
1973, in particular the major earthquake event occurring in 2005. The model, despite some limitations, is rigorous for applying it to
such a marked point pattern, representing well the clustering behaviour as determined by a number of environmental factors. Finally,
the Strauss point process model is suggested for the use in identifying and explaining the occurrences of speckles in a radar image.

1 INTRODUCTION

Spatial point pattern play an increasingly important role in mod-
ern image analysis and geographical information processing. On
the one hand, we observe patterns of objects that show a point-
like pattern, or at least can be modelled as such, whereas on the
other hand several images inherently show point-like patterns.
Typical examples of the first category are the locations of settle-
ments in an area, the presence of wildlife herds observable from
high resolution remote sensing, whereas in geographical infor-
mation processing examples include the position of indoor fires
in a large city, and the position of earthquakes in space and time.
In particular several aspects of object-related noise may exhibit a
point-like pattern, and the most common example of such is the
presence of speckle on a radar image.

Spatial point pattern analysis is a powerful technique to detect
relationships in spatial data distribution. The theory has rapidly
grown in recent years and the background is described in an ac-
cessible way in (9) and (12), whereas a solid summary is given
in (22). Classical examples exist in forestry (2, 13, 14), where
either the positions of trees or the positions of gaps in fotrests
are mdoeled as a point process. Other examples include studies
in epidemiology (12, 17), or wildlife (23). (26) identifies practi-
cal difficulties when applying point pattern analysis methods in
ecology and provides several relevant gudielines. The analysis
methods usually first distinguish between clustering, regularity
and randomness, and succeed by providing answers to questions
about the scale of clustering and reasons behind the patterns. On
the basis of an observed pattern we usually identify a process that
generates these. This allows as well an analysis of spatial dis-
tributions in time (12). Typical examples discussed below are a
Poisson process and a Strauss process, whereas also terms like
a clustered or a regular process are used in the literature. It is
usually the parameters of such process hat we are interested in,
and that we may derive from a collection of observed points, e.g.
within a limited window in space and time. Various software
tools are now easily available for standard use. In this sense, an
increasingly better match may arise between the patterns observ-
able on images and understanding of processes occurring at the
earth surface.

The aim of this paper is to briefly introduce the subject and then
present some examples of data analysis and recognition. This will

include some aspects of the Strauss process model as a specific
model for application in spatial analysis.

2 METHODS

2.1 Point patterns

Basic concepts and analysis methods are in e.g. (9, 6, 19). Our
interest concerns detection of systematics in the distribution, i.e.
regularity or aggregation (clustersing) as deviation from random-
ness. Complete spatial randomness (CSR) is defined by the fol-
lowing criteria: (i) the number of events in a planar region A of
size |A| follows a homogeneous Poisson distribution with mean
λ|A|, where λ is the constant density; (ii) given n events xi in
a region A, the xi are an independent random sample from the
uniform distribution on A (9). In other words, the density of the
point pattern does not vary over the bounded region, and there are
no interactions among the events.

Density estimation can be based on kernel functions (7) - a bi-
variate probability density function, which is symmetric around
the origin located at a point of estimation. Incidents contribute
to density estimation according to their distance from the kernel
centre - the closer to the kernel centre, the larger the influence.
The range of influence is limited by the kernel bandwidth con-
trolling the smoothness of the result. Density plots with well-
chosen bandwidth provide a good summary of the data, whereas
a bandwidth that is too large leads to too much smoothing, and
a bandwith that is too small over-emphasizes local events, like
small variations in the incident pattern. Dependency relationships
for local interactions can be described by the nearest neighbour
distances defined as the distance from the ith event to the nearest
other event in the bounded region of interest. Empirical cumula-
tive probability distribution function Ĝ for the nearest neighbour
distances summarises the incident pattern in an effective way:

Ĝ(w) =

∑
wi≤w 1

n
,

where wi is a nearest neighbour distance for the ith event and n
is the number of events in the study region. Yet, the observed
pattern is usually part of a larger region, where the distribution of
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events is unknown. Interaction between events lying inside and
outside the study region cannot be properly accounted and cause
edge effects. A simple but effective adjustment consists in reduc-
ing the sample by the buffer defined around the boundary. Events
falling inside the buffer are not used for the analysis directly, but
unveil the distribution behind the reduced study region.

To ease the interpretation, it is suitable to plot the Ĝ−function
against the theoretical curve for CSR, which is (ignoring the edge
effects):

G(w) = 1− exp(−λπw2).

Importance of the difference between Ĝ− and G(w) is assessed
by using Monte Carlo simulations. For this purpose, empirical
cumulative probability distribution functions are generated for
nearest neighbour distances for each of 99 realizations of a sim-
ulated CSR process with the same density as the original pattern.
Its average provides a reference line, maximum and minimum
values provide simulation envelopes.

A stochastic mechanism that generates a set of events in the study
region is called a spatial point process. To model the dependence
of domestic fires on exploratory variables we fit a process, termed
aDF process. Its density function reflects the spatial distribution
of the different influences. Assuming a stochastic dependence be-
tween the points, we use a class of Markov point processes (21),
which allows flexible modelling of interpoint interactions. The
Strauss process (24, 16) represents an example of Markov point
process for pairwise interaction and can be used to simulate a
wide range of patterns from simple inhibition to clustering (9,
15). The conditional density of Strauss process is

λ(u, x) = β(u) · γt(u,x),

where β(u) is the density at location u, t(u, x) is the number
of events x that lie within a distance r of u and the inhibition
parameter γ controls the strength of interaction between points.
For the special case that γ = 1 the Strauss model reduces to the
homogeneous Poisson process with constant density β, the case
that γ = 0 corresponds to a simple inhibition process, whereas
for γ > 1 the model produces a clustered process. The effect of
dependence on exploratory variables is expressed with a density
being a loglinear function of covariates:

logβ(u) = β0 + β1c1 + β2c2 + · · ·+ βncn,

where the ci are the explanatory variables and βi are parameters
to be fitted. A linear form is chosen as a first approach in this
exploratory study.

2.2 Goodness of fit

Modelling is an iterative procedure, aiming at finding a suitable
representation of the data corresponding to observed relation-
ships. The suitability of a model is checked according to several
criteria. The Akaike Information Criterion AIC (1) is a versatile
measure for model selection. In addition to goodness-of-fit it also
considers the number of estimated parameters and the number of
observations. A model with the lowest AIC value reflects the best
trade-off between bias and variance.

The overall goodness-of-fit for the Strauss models can be as-
sessed based on simulation envelopes of summary functions (9,

18, 3). The K−function provides a summary of the spatial pat-
tern over a wide range of scales and is therefore more effective
than measures based on the nearest neighbour distances. It is de-
fined as the expected number of other points of the process lying
within a distance d of a typical point of the process, divided by
the density λ. A suitable estimate of this function given by (20):

K̂(d) =
R

n2

n∑
i=1

∑
j 6=i

Id(dij),

where n is a number of points in the study region with area R,
dij is the distance between ith and jth points, and Id(dij) is an
indicator function, which is 1 if dij ≤ d and 0 otherwise. After
adjustment for inhomogeneity this becomes K̂I(d, λ), defined as

K̂I(d, λ) = R−1
n∑

i=1

∑
j 6=i

Id(dij)

λ(xi)λ(xj)
.

We apply the reduced sample method to adjust the estimate for
edge corrections. The K̂I−function is calculated for each of the
realizations of a simulated models. In order to test the goodness-
of-fit of the model, we consider global envelopes, which repre-
sent the largest absolute difference between the simulated and
estimated theoretical curves over the entire distance interval. A
significance level of 0.05 is achieved after 19 simulations.

Spatstat, an R package designed for analysing spatial point pat-
terns was used for the analysis (4, 5, 3).

3 EXAMPLES AND ILLUSTRATIONS

3.1 Domestic fires

The first example considers domestic fires in Helsinki occurring
within a single year. At the city scale, such domestic fires form
a spatial pattern. We can derive various summary statistics de-
scribing pattern properties. These can represent first order effects
describing the number of fires per unit area varying in a study
region, or second order effects describing the dependency rela-
tionships between fires. A visual inspection of the Ĝ plot brings
the spatial distribution of the pattern to light. An excess of near-
est neighbors at short distances indicates clustering in the data,
while an excess of long distances neighbors refers to regularity.
Buildings and census records form an additional pattern of events.
They carry information on types and age of buildings and socio-
economical classes (density of population and workplaces, age
of households, education, income, unemployment). Second or-
der effects, in particular the Ĝ−function between domestic fires
and these patterns of selected influences, provide insight into the
relationships in the data. If there are considerably more near-
est neighbors at short distances than what would be expected for
random distribution, we can assume a correlation between the
events. In this way, processes underlying domestic fires are un-
veiled that indicate the importance of particular exploratory vari-
ables.

Modelling the distribution of domestic fires has been used to as-
sess a probability of fire occurrence and analyse the contribution
of explanatory variables. A point pattern analysis allows to pre-
serve the level of detail offered by the data itself, in contrast to
lattice methods that handle aggregated data. It avoids an ambigu-
ous definition of a lattice scale and therefore enables to draw more
accurate conclusions. The methods applied on buildings could be
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well applied to other cities and may include other phenomena that
can be represented as a point pattern or a grid layer, such as crime
distribution or house prices.

Conceptualization of studied phenomena as point pattern layers
allows to apply well-established statistical methods for spatial
point patterns analysis. In addition, spatial statistics offers more
than a basis for accepting or rejecting null hypotheses about spa-
tial randomness. The difference from randomness observed from
the Ĝ−function indicates a dependence between domestic fires
and particular explanatory variables. The Ĝ−function also pro-
vides an insight into the aggregation scales for separate variables.
Comparison of plots for different variables helps to identify the
most important influences. The Strauss model considers all the
variables simultaneously and enables to quantify their influence
to the distribution of domestic fires through the estimated param-
eters. The analysis of the distribution in time by splitting the set
of events according to different time scales could be enhanced by
using periodic splines to directly specify the time domain in the
model. Yet, this is beyond the scope of the current manuscript
and will be explored in the future.

The point pattern analysis can serve as a basis for generating new
hypotheses and complement other data mining methods in the
process of knowledge discovery. Still, before drawing reliable
conclusions, the obtained results need to be discussed and con-
firmed with domain experts. Here we can benefit from the visual
form of the density and Ĝ−function plots.

The point pattern analysis is hampered by a large number of is-
lands within the study area, which, as being built-up, need to be
considered in the study. Rigorous distinction of land and wa-
ter areas through the observation window and applying an edge
correction would give a solution, however, it prolongs the pro-
cessing time exceedingly. Having in mind that the frequency of
incidents on the islands generally decreases with more tedious
accessibility, we assume no significant effect of the observation
window shape on the final results. To confirm this hypothesis, we
performed the Ĝ−function with the reduced sample edge cor-
rection method on a restricted area covering only a mainland of
Helsinki. As expected, no major differences were observed in the
results between the general and restricted observation windows.
We therefore proceed the analysis using the simplified observa-
tion window.

Fitted models of domestic fires distribution reflect the empirical
data. As there always exists a gap between the data and reality,
the best model from a mathematical point of view does not need
to be the best one in reality. Thus, it is desirable to consider
also other criteria and keep the preferred model consistent with a
priori knowledge.

Precise interpretation of the fitted parameter values indicates the
relations between estimated density and variables involved in the
model. However, the parameters can provide an accurate account
of the process only in connection with the concrete variables val-
ues. The actual degree of influence of particular model variables
can be assessed using AIC, for more details see (8). According to
Akaike’s rule of thumb, two models are significantly different, if
the difference of their AIC is more than 2. Thus, model selection
based on step-wise variable reduction comparing the AIC values
leads to the model representing the most significant variables.

The method is data driven and the reliability of the results de-
pends on the quality of the input datasets. We should therefore
consider the data quality carefully and be aware of data quality
problems that may occur. In this study we battled with the po-
sitional accuracy of the incident dataset. The coordinates of the

incident location are inserted via an electronic report filled by the
mission commander by clicking a mouse on the corresponding
place in the map. This process should ensure the highest possible
accuracy. As the commander’s main responsibility is in extin-
guishing the fire, we may put some doubt on the precision of the
coordinates of incidents, which may not correspond to incident
addresses. Also, temporal variations of explanatory variables are
unknown and may influence the results as, for example, popula-
tion density data are based on permanent addresses. Additional
uncertainty emerges with the data processing. We carried out the
analysis by splitting set of events into various categories, that may
have vague boundaries between them. Although we do not expect
major changes in the results, this issue is postponed for a further
analysis.

3.2 Earthquakes

In a recent study we investigated earthquake data in the North-
ern part of Pakistan, an active seismic zone. Data include 1403
earthquakes that occurred in the region between January 1973
and August 2008. The year 2005 is marked by a large seismic
activity in the region as compared to the previous years. This
is due to a major shock, the Kashmir earthquake of magnitude
7.6, which struck the region on Oct 8, 2005 followed by a range
of aftershocks, causing great devastation and misery by killing
more than 80000 people and damaging the whole infrastructure
of the region. There were 22 earthquakes of magnitude 5.5, out
of which 12 occurred the same day as the major earthquake and
15 earthquakes of magnitude 5.5 occurred within 15 days after
the Kashmir earthquake. Only 7 other earthquakes of magnitude
5.5 occurred during the past 35 years. The seismicity of the area
decreases after the first month after the Kashmir earthquake and
the number of events in the preceding months is almost negligible
as compared to the first month after the main shock. Locations of
all earthquakes within one month after the Kashmir earthquake
are in its close vicinity. Only four earthquake locations lie more
than 50 km from the aftershocks region. The analysis of the data
considering it as a point pattern will be based on this study region
and the earthquakes located within it.

The epicentre region lies on the western edge of the Himalayan
Arc, which denotes the area of continental convergence between
the Indian and Eurasian tectonic plates. The Indian plate moves
northwards at a rate of about 40mm/year and subducts below the
Eurasian plate. The Kashmir earthquake is associated with fault
rupture near the western end of the MBT in Kashmir region of
Northern Pakistan. Location of tectonic plates boundaries plays
a significant role in determining seismicity of the study area.

To assess the influence of geological faults located in the study
region on the earthquakes distribution pattern, the distance of
earthquake locations to faults could serve as additional informa-
tion (covariates) in modelling the point pattern. For that purpose
a a geo-referenced Tectonic map of Pakistan. From this map the
study area of the earthquakes data was extracted using its bound-
ing coordinates and the faults within the study area were digi-
tized. Aftershocks earthquakes occurred along the plate bound-
aries with a dense cluster of aftershocks near the point where the
two boundaries converge. Thus the location of plate boundaries
can possibly serve as an important factor contributing to the dis-
tribution pattern of the earthquakes. To evaluate the contribution
of plate boundaries location, a pixel image of the shortest distance
of each pixel from the pate boundary was obtained. Similarly, to
test the effect of active faults in the study area on the earthquake
point pattern, distance of each earthquake location was calculated
from the nearest fault.
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An earthquake hypocenter is the three dimensional point in the
earth where the rupture of an earthquake begins. For large earth-
quakes, the ruptures may extend up to several kilometres, and the
hypocenter may be anywhere along the rupture. The epicentre
of an earthquake event is the point location on the surface of the
globe that represents the projection of the hypocenter onto the
surface of the globe.

The explanatory variables, apart from the Cartesian coordinates,
consisted of the information about the spatial location of the plate
boundaries and geological faults in the study area given as pixel
images showing shortest distance to the nearest plate boundary
and nearest fault location for each pixel. The application of
Strauss point process model proved satisfactory in explaining the
spatial trends and capturing the sources of variability introduced
by the explanatory variables. The application showed that the
locations of plate boundaries and geological faults are signifi-
cant determinants for the earthquake epicentre locations. When
the effects of both these variables were combined along with the
magnitudes and geographic locations of the earthquake epicen-
tres, the modelling was significantly improved. The effects of
the explanatory variables were quantified by improvement in AIC
values. The improvement in the modelling of earthquake location
can also be assessed visually by the plots of fitted trends for dif-
ferent types of earthquakes.

3.3 Speckle on remote sensing images

Radar images provide important information about the earth sur-
face that is complementary to optical remote sensing images. In
some cases it has advantage over optical images, e.g. in dense
cloud cover conditions and observation at night time. Synthetic
Aperture Radar (SAR) is a special case of radar system where
relatively high spatial resolution is achieved due to coherent pro-
cessing of many recorded responses.

Speckle is an inherent property of SAR images. It originates from
interference of coherent responses coming from many scattering
elements within a resolution cell. It results into a large variance
of radar image compared to its mean value. Therefore SAR im-
ages are difficult to use for automatic classification purposes. In
several instances, it is required to reduce the effect of speckle,
being this goal of SAR image despeckling.

As an example we may consider the ERS-2 Single Look Complex
(SLC) image covering Serowe region in Botswana (see Figure 1.
The patterns of the spikes show a point structure that may identify
important issues related to land processes. The image presented
attached subset of HH image of Botswana. The bright spots in the
left part of the image are results from strong reflectors in a city.
Hence, also after despeckling, the remaining pattern of extremes
shows a pattern that can be readily analyzed and interpreted using
a statistical point pattern analysis.

4 DISCUSSION

At this stage, good results are obtained with the combination of
spatial point pattern theory and remote sensing, as well as in
its combination with geographical information processing. The
combination of readily available software tools and the request
for an increasingly better data quality may lead to a more reg-
ular use of the methodology, thus leading to answering relevant
questions. In particular, modern methods on space-time point
processes may become beneficial to better understand the devel-
opment of patterns in space and time.

Figure 1: (an ERS-2 Single Look Complex (SLC) image covering
Serowe region in Botswana and the same image after despeck-
ling. .

Standard GIS packages do not yet contain easy to use and inter-
pretable spatial statistical software. In the context of geoinfor-
mation processing, this is a clear deficiency, as such procedures
are useful for a wide set of applications. A better integration of
the spatial statistical software and GIS packages is a necessary
step forward. An important reason in this respect is that a spatial
statistical summary of collected or registered point data may be
helpful to further communicate quantitative findings to the user.

A step to further explore concerns the issue of spatial data quality.
Spatial data quality is firstly relevant in terms of accuracy of the
observations,. In the study described above on earthquakes this
plays an important role, as an earthquake occurs at some depth
below the Earth crust, whereas its effects are mainly visible at the
surface. Moreover, there is never a precise location of such an
event, and only an approximate value. The second issue related
to point patterns is their attribute, which may be difficult to define
in full. The domestic fire example may at several instances relate
the question whether any fire that is registered in a house is in
fact domestic fire. Buildings may be used for different purposes,
and there is usually an issue of not reporting such a fire to fire
brigades, or reporting it in a deviate way. Such issues apply to a
range of other spatial point patterns in a similar way. An as yet
somewhat unexplored domain concerns the use of marked point
processes in remote sensing images. When additional informa-
tion comes available from images, it is not difficult to imagine
that such methods can be useful for a range of applications. In
particular, we see good opportunities in deforestation studies and
in development of urban regions.

Finally, recent progress has been made on spatial processes in
modeling of spatial extremes and of modeling point patterns in
the space-time domain. A good example of the first type of study
is in soil contamination. The second type of analysis is well pre-
sented in two recent papers (11), (10).
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