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ABSTRACT:  

Kernel methods are a class of algorithms for pattern recognition. They play an important role in the current research area of spatial and 

temporal analysis since they are theoretically well-founded methods that show good performance in practice. Over the years, kernel 

methods have been applied to various fields including machine learning, statistical analysis, imaging processing, text categorization, 

handwriting recognition and many others. More recently, kernel-based methods have been introduced to spatial analysis and temporal 

analysis. However, how to define kernels for space-time analysis is still not clear. In the paper, we firstly review the relevant kernels for 

spatial and temporal analysis, then a space-time kernel function (STK) is presented based on the principle of convolution kernel for 

space-time analysis. Furthermore, the proposed space-time kernel function (STK) is applied to model space-time series using support 

vector regression algorithm. A case study is presented in which STK is used to predict China’s annual average temperature. 

Experimental results reveal that the space-time kernel is an effective method for space-time analysis and modelling. 

 

1. INTRODUCTION 

Kernel methods are a class of algorithms for pattern recognition. 

The general task of pattern recognition is to find and study 

various patterns (such as clusters, correlations, classifications, 

regressions, etc) in different types of data (such as time series, 

spatial data, space-time series, vectors, images, etc) (Scholkopf 

and Smola, 2002; Shawe-Taylor and Cristianini, 2004). To date, 

kernel-based methods have been applied to a range of areas 

including machine learning and statistical analysis amongst 

others and have subsequently become a very active research area 

(Kanevski et al, 2009). Some of the best known algorithms 

capable of operating with kernels are support vector machines 

(Vapnik, 1995), general regression and probabilistic neural 

networks (Specht, 1991), canonical correlation analysis (Melzer 

et al, 2003), spectral clustering (Dhillon et al, 2004) and principal 

components analysis (Hoffmann, 2007).   

 

Recently, kernel functions have been introduced to spatial 

analysis (Fotheringham et al, 2002; Hallin et al, 2004; 

Pozdnoukhov and Kanevski, 2008) and temporal analysis 

(Rüping, 2001; Ralaivola and d'Alché-Buc, 2004; 

Sivaramakrishnan et al, 2007). In the field of spatial analysis; 

Fotheringham et al (2002) developed a method using a Gaussian 

kernel function for the analysis of spatially varying relationships 

called Geographically Weighted Regression (GWR). GWR has 

been widely used for spatial analysis including house price 

prediction, ecological distribution, etc. Pozdnoukhov and 

Kanevski (2008) present a methodology for data modelling with 

semi-supervised kernel methods, which is applied to the domain 

of spatial environmental data modelling. They demonstrate how 

semi-supervised kernel methods can be applied in this domain, 

starting from feature selection; to model selection and up to 

visualization of the results. A case study of topo-climatic 

mapping reveals that the described methodology of data-driven 

modelling of complex environmental processes using machine 

learning methods improves the modelling considerably. In the 

field of temporal analysis, Ralaivola and d'Alché-Buc (2004) 

proposed a new kernel-based method as an extension to linear 

dynamical models. The kernel trick is used twice; first, to learn 

the parameters of the model, and second, to compute preimages 

of the time series predicted in the feature space by means of 

Support Vector Regression (SVR). Their model shows strong 

connection with the classic Kalman Filter model. Kernel-based 

dynamical modelling is tested against two benchmark time series 

and achieves high quality predictions. Sivaramakrishnan et al 
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(2007) propose a novel family of kernels for multivariate time-

series classification problems. Each time-series is approximated 

by a linear combination of piecewise polynomial functions in a 

reproducing kernel Hilbert space by a novel kernel interpolation 

technique. Through the use of a kernel function, a large margin 

classification formulation is proposed, which can discriminate 

between two classes. The formulation leads to kernels, between 

two multivariate time-series, which can be efficiently computed. 

Furthermore, the proposed kernels have been successfully applied 

to writer independent handwritten character recognition. 

 

The use of kernel methods in spatial and temporal analysis has 

been widely covered in the literature; however, how to 

accommodate kernels in spatio-temporal analysis is still unclear 

and hence forms the focus of the current study. The structure of 

the paper is as follows; in section two, a review of the relevant 

kernels that can be applied to spatial and temporal analysis is 

carried out; in section three; a space-time kernel (STK) function 

is proposed based on the principle of a convolution kernel that 

combines spatial and temporal kernels; in section four, a support 

vector regression machine is developed that makes use of STK 

(SVR-STK) to model space-time series. The final section 

summaries the major findings and proposes the direction of 

further research. 

 

2. REVIEW OF KERNELS IN SPACE-TIME ANALYSIS 

2.1 Kernels in spatial analysis 

In spatial analysis, kernels are used as weighting functions to 

model and explain local spatial autocorrelation and heterogeneity 

features. For example, in Geographically Weighted Regression 

(GWR) (Fotheringham et al, 2002), a Gaussian kernel is used to 

model geographical data whose weights decrease continuously as 

the distance between the two points increases (note, 

Fotheringham et al (2002) also recommend the bi-square kernel 

function as an alternative). A Gaussian kernel, as seen in Figure 1, 

is defined as a symmetric monotonic function that decreases in 

value as the distance increases between the target spatial unit 
 

and the neighbouring spatial unit  . 

.  

Figure 1. Sketch map of spatial kernel (Fotheringham et al, 2002) 

 

The Gaussian kernel function takes the following form: 

      (1) 

where    is the distance between target spatial unit  
 
 and its 

neighbouring spatial unit   and  is variance; also referred to 

as bandwidth (Fotheringham et al, 2002). The parameter  can 
change the smoothing degree of the Gaussian function curve; 

which alters the contribution of each neighbouring spatial unit  

localized to a region nearby target spatial unit 
 

. For a given 
regression point, the weight of a data point is at a maximum when 

it shares the same location as the regression point. This weight 

decreases continuously as the distance between the two points 

increases according to . In this way, a regression model is 
calibrated locally simply by moving the regression point across 

the region. For each location, the data will be weighted 

differently so that the results of any one calibration are unique to 

a particular location. 

 

Kanevski et al (2009) apply a multi-scale kernel to deal with the 

problem of spatial interpolation of environmental data at different 

scales; the usual spatial interpolation methods are global and 

smoothing and can only deal with an average scale. This issue is 

addressed by considering a linear combination of Gaussian radial 

basis functions of different bandwidths. For a spatial modelling 

problem, multi-scale Radial Basis Functions (RBF) can be used: 

       (2) 

where  is the number of kernels and  is the weight 

corresponding to -th training point and -th kernel. A 
potential issue with this technique is that the choice of parameter 

 increases the dimension of the optimization problem, which is 
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. Moreover,  and bandwidths  have to be 
tuned, which can reflect the change of spatial process in scale. 

 

2.2 Kernels in temporal analysis 

Rüping (2001) provides an overview of some of the kernel 

functions that can be applied to time series analysis, and 

discusses their relative merits. Typically, time series analysis 

requires a higher level of reasoning than simple numerical 

analysis can provide and therefore model assumptions must be 

carefully considered. Experiments are carried out to discover if 

these different model assumptions have effects in practice and if 

kernel functions exist that allow time series data to be processed 

with support vector machines without intensive pre-processing. 

Rüping (2001) tests various kernel functions that are capable of 

being applied to time series analysis, including linear kernels, 

RBF kernels, Fourier kernels, Subsequence Kernels, PHMM 

Kernels, Polynomial kernels, etc. To give an example, a linear 

kernel  is the most simple kernel function. The 

decision function takes the form . When 
one uses the linear kernel to predict time series, 

i.e. , the 

resulting model is a statistical autoregressive model of the order 

 ( ). With the kernel, time series are taken to be similar 
if they are generated by the same AR-model. 

 

Of most interest to this study is the Fourier kernel; since it can 

handle Fourier transformations. This representation is useful if 

the information of the time series does not lie in the individual 

values at each time point but in the frequency of some events. It 

was noted by Vapnik (1995) that the inner product of the Fourier 

expansion of two time series can be directly calculated by the 

regularized kernel function: 

 

     (3) 

where  is regularization multiplier, which controls degree of 
attenuation of high frequency component in Fourier expanded 

equation. With the increase of , SVR can express high 
frequency component more and enhance complexity of model. 

Conversely, with the reduction of , high frequency component 

in data will attenuate quickly. Thus, the choice of  will 

influence the characterization ability of SVM for explaining the 

degree of data complexity. The schematic graph of Fourier kernel 

can be seen in Figure 2. 
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Figure 2. Schematic graph of Fourier kernel 

 

3. SPACE-TIME KERNELS FUNCTION (STK) 

The design of kernels for particular tasks is an open research 

problem. Kernel design methodology that incorporates prior 

knowledge into the kernel function is an important part of the 

successful application of the method (Kanevski et al, 2009). As 

discussed above, kernel functions can tackle spatial and temporal 

analysis using kernel tricks in machine learning and statistical 

models. The kernel trick is a method for using a linear classifier 

or regression algorithm to solve a nonlinear problem by mapping 

the original input space into a higher-dimensional feature space 

(Kanevski et al, 2009). According to kernel theory, a convolution 

kernel is a kind of construction kernel function, whose operation 

will be enclosed based on a standard kernel function (i.e. 

Polynomial kernel, Gaussian kernel, etc) (Haussler, 1999). A 

convolution kernel has following form: 

             (4) 

where   is finite set and   is convolution of basic kernel 

functions . We assume 

space-time kernel as   and its form is: 
 

         (5) 

where  is space-time kernel, which processes space-

time convolution;  is a spatial kernel, which processes 

spatial convolution;  is a temporal kernel, which 

processes temporal convolution;  is the order of the kernel 
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function. Generally, a bigger   can improve the learning ability 

of the kernel function. To avoid overfitting,  should not be too 
large. 

 

As discussed in Section 2.1, a Gaussian function is an important 

function that is able to tackle local spatial heterogeneous 

characteristics in geographical data. Additionally, Gaussian 

kernels have proven learning ability in machine learning 

regardless of the dimensionality of the sample data. Therefore, it 

can be used in the spatial kernel  discussed in Section 
2.1 with following form: 

 
       (6) 

where  is the distance between target spatial unit x  

and its neighbouring spatial unit; and  is the kernel bandwidth, 

which is a parameter for spatial kernel .  changes 
the smoothing degree of Gaussian curve, which varies the 

contribution of each neighbouring spatial unit  localized to a 

region nearby target spatial unit  . 
Convolution theorem states that Fourier transformations can 

convert complex convolution operations to simple product 

operations (Nussbaumer, 1982). This indicates that Fourier 

kernels can be used to tackle convolution in time. The Fourier 

kernel has been discussed in Section 2.2. Additionally, it should 

be noted that the Fourier kernel is well suited to modelling 

periodic series (including sine and cosine frequency components). 

As for sequences there is no periodicity so a polynomial kernel is 

more appropriate due to its stronger generalization ability. A 

polynomial kernel takes the following form: 

      (7) 

where  is the order of the polynomial kernel. With reduction of 

, generalization ability of the polynomial kernel will become 

stronger. Larger  will improve the complexity of the machine 

learning algorithm, resulting in the decline of generalization 

ability. 

 

As discussed above, Fourier kernels and Polynomial kernels 

strongly complement each other. Therefore, we can combine 

them to approximate any series as long as kernel parameters are 

exact to the right degree. Thus, the temporal kernel  
can be expressed mathematically as equation (8) where  is a 
coefficient to give more impact to the Fourier kernel  and 

Polynomial kernel ;  and    are kernel parameters of the 
two kinds of basic kernel functions  

 

According to Equation 5, 6 and 8, the expression of the space-

time kernel can be derived as equation (9).  

 

The function of Equation 9 is called the space-time kernel 

function (STK). 

 

4. APPLICATION OF STK 

To test the performance of STK, it is applied to the modelling of 

space-time series, which are sets of location-related time series 

(Bennett, 1975; Martin and Oeppen, 1975). The Support vector 

algorithm, one of the basic and most advanced algorithms, is a 

natural field of application for kernels. Hence, here an SVR 

model with STK is constructed and used to analyze and model 

nonlinear space-time series. Figure 3 describes the structure and 

target function of the SVR machine with STK. The output 

expression in Figure 3 is the objective function of SVR with STK 

(called SVR-STK) which is a regression function rather than a 

classification function. 

.

       

 

 (8) 

 (9) 
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Figure 3. Architecture of support vector regression machine with 

space-time kernel (STK) 

 

The model of Figure 3 is validated using data obtained from the 

national meteorological centre of P. R. China, including yearly 

temperature at 194 national meteorological stations (with 
geographical coordinates - longitude x  and latitude ) from 

1951-2002 as seen in Figure 4 (Cheng and Wang, 2009).  

y

 

Figure 4. Meteorological stations in study area: (a) spatial 

location distribution of the 194 stations; (b) graph of time series 

and trends of annual average temperature from 1951 to 2002 at 

the three stations of Beijing, Guangzhou, and Urumchi. 

 

Of the 194 observation stations, there are huge data gaps in 57 

stations. The data of these 57 stations are discarded, and data of 

137 stations are used for the following test. To train and validate 

the models the data sets are split into two subsets: 80% as a 

sample set to train the model, and 20% as a validation set to test 

and validate the model. Thus, in this case, the meteorological data 

between 1951 and 1992 (42 years in total, nearly 80% of 52 years) 

is chosen as the training dataset for the forecasting between 1993 

and 2002 (10 years in total, nearly 20% of 52 years).  

 

Next, the SVR-STK model is constructed and trained after 

exploratory space-time analyses are undertaken. Each spatial unit 

is predicted in the experiment. Since the parameters of Equation 9 

are numerous, selection of the arguments is tedious. The 

parameters of Equation 9 are adjusted and chosen according to 

the cross-validation method in order to obtain the best results. 

One-step-ahead forecasting, which is the most common testing 

standard, is considered in this case study. The SVR-STK results 

are compared firstly against a standard SVR model with inputs: 

 

    (10) 
 

Where  and  are the geographic coordinates of the th 

station and  is the th time period. Secondly, they are 
compared against pure time series SVR for the three individual 

test stations. The RBF kernel is used for both comparison tests; 

parameters were tuned separately for each station. Table 1 

summarizes the accuracy measures using RMSE index for the 

fitted and forecasting results. SVR-STK significantly outperforms 

the plain SVR model for fitting and forecasting, achieving 

forecasting improvements of 49.75%, 52.4% and 35.36% for 

Beijing, Guangzhou and Urumchi respectively. SVR-STK also 

outperforms pure time series SVR for two of the three stations; 

Guangzhou and Urumchi, by 7.42% and 1.81% respectively. 

There is no improvement for Beijing, but given that SVR-STK 

requires only one set of parameters to be trained for all stations, 

the results are promising. 

 

 Table 1. Accuracy (RMSE) measures for three meteorological 

stations Beijing, Guangzhou and Urumchi in 52 years 

 

5. CONCLUSIONS AND DISCUSSION 

In the present paper, a space-time kernel function (STK) is 

presented, and the proposed STK is applied to the modelling of 

Fitted (1951-1992) 
RMSE  

  

Plain SVR  Time series 
SVR 

SVR-STK  

Beijing  0.981 0.462 0.209 
Guangzhou  0.910 0.314 0.084 
Urumchi 1.173 0.853 0.306 

Forecasting (1993-2002) 
RMSE  

  

Plain SVR Time series 
SVR 

SVR-STK 

Beijing  0.802 0.316 0.403 
Guangzhou  0.813 0.418 0.387 
Urumchi 0.837 0.551 0.541 
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space-time series by support vector regression algorithm. An 

illustrative case study is presented in which China’s annual 

average temperature at 137 international meteorological stations 

from 1993-2002 is predicted using a support vector regression 

model with STK (SVR-STK). Although good results are achieved, 

further validation is still needed. Moreover, the following 

problems are identified; firstly, more research is needed into 

whether the proposed space-time kernel can be used to model and 

explain local space-time autocorrelation and heterogeneity, and 

secondly; whether the space-time kernel can be introduced to 

GWR modelling using some kernel tricks. The above two 

problems should be considered in further research. 
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