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ABSTRACT: 

 

Spatial digital image analysis plays an important role in the information decision support systems, especially for regions frequently 

being affected by hurricanes and tropical storms. For the aerial and satellite imaging based pattern recognition, it is unavoidable that 

these images are affected by various uncertainties, like the atmosphere medium dispersing. Image denoising is thus necessary to 

remove noises and retain important signatures of digital images. The linear denoising approach is suitable for slowly varying noise 

cases. However, the spatial object recognition problem is essentially nonlinear. Being a nonlinear wavelet based technique, wavelet 

decomposition is effective to denoise blurring spatial images. The digital image can be split into four subbands, representing 

approximation (low frequency feature) and three details (high frequency features) in horizontal, vertical and diagonal directions. The 

proposed soft thresholding wavelet decomposition is simple and efficient for noise reduction. To further identify the individual 

targets, nonlinear K-means clustering based segmentation approach is proposed for image object recognition. The selected spatial 

images are taken across hurricane affected Louisiana areas. In addition to evaluate this integration approach via qualitative 
observation, quantitative measures are proposed on a basis of the information theory, where the discrete entropy, discrete energy and 

mutual information, are applied for the accurate decision support. 

 

 

1. INTRODUCTION 

 

Spatial image processing has many potential applications 

in the fields of ground surveillance, weather forecasting, 

target detection, environmental exploration, and so on. 

The remote taken images will be affected by various 

factors, such as atmospheric dispersions and weather 

conditions, thus spatial images contain diverse types of 

noises, both slowly varying or rapidly varying ones. 

Discrete wavelet denoising can be designed to eliminate 

noises presented in images so as to preserve the 

characteristics across all frequency ranges. It involves 

three steps, that is, linear wavelet transform, nonlinear 

thresholding and linear inverse wavelet transform. Using 

discrete wavelet transform, a digital image can be 

decomposed into the approximation component and 

detail components (horizontal, vertical, diagonal). The 

approximation component will be further decomposed. 

Information loss between two successive decomposition 

levels of approximations will be represented in detail 

coefficients [1-3, 5-6]. The essence of fractal-based 

denoising in the wavelet domain has been used to predict 

the fractal code of a noiseless image from its noisy 

observation. The cycle spinning is incorporated into 

these fractal-based methods to produce enhanced 

estimations for the denoised images [7]. The new image 

denoising method based on Wiener filtering for soft 

thresholding has been proposed. It shows a high and 

stable SNR (signal to noise ratio) gain for all noise 

models used. This process leads to an improvement of 

phase images when real and imaginary parts of wavelet 

packet coefficients are filtered independently [8]. Two 

techniques for spatial video denoising using wavelet 

transform are used: discrete wavelet transform and dual-

tree complex wavelet transform. An intelligent denoising 

system is introduced to make a tradeoff between the 

video quality and the time required for denoising. The 

system is suitable for real-time applications [9]. 

 

Image segmentation is a main step towards automated 

object recognition systems. The quality of spatial images 

is directly affected by atmospheric medium dispersion, 

pressure and temperature. It emphasizes necessity of 

image segmentation, which divides an image into parts 

that have strong correlations with objects to reflect the 

actual information being collected [1-3]. Spatial 

information enhances quality of clustering. In general, 

fuzzy K-means algorithm is not used for color image 

segmentation and not robust against noise. In this case, 

integration of discrete wavelet denoising and nonlinear 

K-means segmentation provides a suitable solution. 

Spatial information can be incorporated into the 

membership function for clustering of color images. For 

optimal clustering, gray level images are used. The 

spatial function is the summation of the membership 

function in the neighborhood of each pixel under 

consideration. It yields more homogeneous outcomes 

with less noisy spots. Image segmentation refers to the 

process of partitioning a digital image into multiple 

regions. Each pixel in a region is similar with respect to 

specific characteristic, like color, brightness, intensity or 

texture. [10-12]. To minimize the effects from medium 

dispersing, K-means clustering is critical for image 

processing. It is used to accumulate pixels with 

similarities together to form a set of coherent image 

layers. For K-means clustering, optimization can be 

implemented via the control algorithms such as the 

nearest neighbor rule or winner-take-all scheme. 

Nonlinear K-means clustering is presented here for 

image segmentation [10-14].  
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To objectively measure the impact of technology 

integration of image denoising and image segmentation, 

metrics of the discrete entropy, discrete energy, relative 

entropy and mutual information can be introduced to 

evaluate all the measuring outcomes of image processing 

integration [4]. 

 

2. DISCRETE WAVELET TRANSFORM 

 

Two spatial source images were taken in State of 

Louisiana regions, which are frequently affected by 

hurricanes. The first image shows the spatial view of 

New Orleans and the second image shows the spatial 

view of Baton Rouge. The source images are 

contaminated by noises. The objective is to identify 

diverse types of targets involved. Image processing 

technology integration is proposed, where the nonlinear 

wavelet denoising is applied at first and nonlinear K-

means clustering is used for target identification.  

 

 
 

Fig.1 Source Spatial Image of New Orleans Areas 

 

 
 

Fig.2 Source Spatial Image of Baton Rouge Areas 

 

Discrete wavelet transform uses a set of basis functions 

for image decomposition. In a two dimensional case, 

four functions will be constructed: a scaling function 

φ(x, y) and three wavelet functions ψ
H
(x, y), ψ

V
(x, y) and 

ψD(x, y). Four product terms produce the scaling function 

(1) and separable directional sensitive wavelet functions 

(2)-(4), resulting in a structure of quaternary tree. Here 

the scaling function and wavelet functions are all 

determined by Haar Transform. 

 

φ (x, y)  = φ(x)φ(y)    (1) 

ψ
H
(x, y) = φ(y)ψ(x)     (2) 

ψV(x, y) = φ(x)ψ(y)     (3) 

ψ
D
(x, y) = ψ(x)ψ(y)     (4) 

 

The wavelets measure variations in three directions, 

where ψH(x, y) corresponds variations along columns 

(horizontal), ψ
V
(x, y) corresponds to variations along 

rows (vertical) and ψ
D
(x, y) corresponds to variations 

along diagonal direction. The scaled and translated basis 

functions are defined by:  

Φ j,m,n(x, y) = 2 
j/2

 φ(2
j
x - m, 2

j
y - n)  (5) 

ψ
i
 j,m,n(x, y) = 2 

j/2
 ψ

i
 (2

j
x - m, 2

j
y - n), i={H, V, D} (6) 

where index i identifies the directional wavelets of H, V, 

and D. Given the size of image as M by N, the discrete 

wavelet transform of the function f(x, y) is formulated 

as: 

0

M-1 N-1

0

x=0 y=0 j ,m,n

1
w (j ,m,n)= f(x,y) (x,y)

MN
ϕ ϕ∑∑  (7) 

M-1 N-1
i i

ψ j,m,n

x=0 y=0

1
w (j,m,n)= f(x,y)ψ (x,y)

MN
∑∑  (8) 

where i={H, V, D}, j0 is the initial scale, the wj(j0, m, n) 

coefficients define the approximation of f(x, y), wi
ψ(j, m, 

n)  coefficients represent the horizontal, vertical and 

diagonal details for scales j>= j0. Here j0 =0 and select N 

+ M = 2
J
 so that j=0, 1, 2,…, J-1 and m, n = 0, 1, 2, …, 2

j
 

-1. The f(x, y) can also be obtained via inverse discrete 

wavelet transform. Discrete wavelet decomposition and 

thresholding will both be applied in discrete wavelet 

transform. 

 

Discrete wavelet transform is implemented as a multiple 

level transformation, where two level transformation is 

implemented in context. The decomposition outputs at 

each level include: the approximation, horizontal detail, 

vertical detail and diagonal detail. Each of them has one 

quarter size of its original image followed by 

downsampling by a factor of two. The approximation 

will be further decomposed into multiple levels while the 

detail components will not be decomposed. Information 

loss between two immediate approximations is captured 

as the detail coefficients. For the denoising using discrete 

wavelet transforms, only wavelet coefficients of the 

details at level one will be subject to thresholding, while 

the approximation components at the level one and 

higher levels will stay the same for image reconstruction.  

  

In a thresholding process, the selection of the threshold is 

critical. Soft thresholding is selected instead of hard 

thresholding, which will shrink nonzero wavelet 

coefficients towards zero. Considering that a small 

threshold produces a good but still noisy estimation 

while in general, a big threshold produces a smooth but 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

153



 

blurring estimation, thus the median value stem from the 

absolute value of wavelet coefficients at each wavelet 

decomposition level is selected. The shrinkage function 

of soft thresholding is formulated at each decomposition 

level as (9), where THR is the median threshold value 

based on wavelet coefficients. x is the input signal and 

f(x) is the nonlinear signal after thresholding. 

f(x)= sgn(x)(|x| - THR)                                    (9) 

 

Using wavelet denoising, two revised images are 

generated which represent the intrinsic geographical 

information of two biggest cities of State of Lousiana 

(Figs. 3-4). These two denoised images will be further 

analyzed by nonlinear K-means clustering.   

 

 
 

Fig.3 Denoised Image of New Orleans Areas 

 

 
 

Fig.4 Denoised Image of Baton Rouge Areas 

 

3. NONLINEAR K-MEANS SEGMENTATION 

 

In image nonlinear segmentation, four clusters are 

proposed for partitioning. Centers of each cluster 

represent the mean values of all data points in that 

cluster. A distance metric should be determined to 

quantify the relative distances of objects. Both Euclidean 

and Mahalanobis distances are major types of distance 

metrics. Computation of the distance metrics is based on 

the spatial gray level histograms of digital images. The 

Mahalanobis metric distance has been applied, which is 

formulated as (10), where XA is the cluster center of any 

layer XA, s is a data point, d is the Mahalanobis distance, 

the KA
 -1 is the inverse of the covariance matrix.  

d=(s–XA)
T 

KA
-1 

(s- XA)             (10) 

 

K-means clustering assigns each object a space location, 

which classifies data sets through numbers of clusters. It 

selects four cluster centers and points cluster allocations 

to minimize errors. Optimal statistical algorithms are 

applied for classification, which are categorized as 

threshold based, region based, edge based or surface 

based. The distances of any specific data point to several 

cluster centers should be compared for decision making. 

For each individual input, winner-take-all competitive 

learning (11-12) is applied so that only one cluster center 

is updated. Images will thus be decomposed into four 

physical entities. In fact, the winner-take-all learning 

network classifies input vectors into one of specified 

categories according to clusters detected in the training 

dataset. All points are eventually allocated to the closest 

cluster. Learning is performed in an unsupervised mode. 

Each cluster center has an associated weight that is listed 

as w’s. The winner is defined as one whose cluster center 

is closest to the inputs. Thus, this mechanism allows for 

competition among all input responses, but only one 

output is active each time. The unit that finally wins the 

competition is the winner-take-all cluster, so the best 

cluster center is computed accordingly. 

wijx =min(wix) for j = 1, 2, 3, 4;  i = 1, 2, 3, 4       (11) 

wi1 + wi2 + wi3+ wi4 = 1 for i = 1, 2, 3, 4               (12)  

 

Assume the cluster center S wins, the weight increment 

of S is computed exclusively and then updated according 

to (13), where α is a small positive learning parameter 

and it decreases as the competitive learning proceeds. 

∆wij = α(xj – w ij), for j = 1, 2, 3, 4; i = 1, 2, 3, 4   (13) 

 

The K-means clustering outcomes of two city images are 

shown in Figs. 5-12, where objects of the highway, river, 

building and grass lawn are major features in 4 clusters. 

 

 
 

Fig.5 K-means Clustering #1 of New Orleans Areas 
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Fig.6 K-means Clustering #2 of New Orleans Areas 

 

 
 

Fig.7 K-means Clustering #3 of New Orleans Areas 

 

 
 

Fig.8 K-means Clustering #4 of New Orleans Areas 

 

 
 

Fig.9 K-means Clustering #1 of Baton Rouge Areas 

 

 
 

Fig.10 K-means Clustering #2 of Baton Rouge Areas 

 

 
 

Fig.11 K-means Clustering #3 of Baton Rouge Areas 
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Fig.12 K-means Clustering #4 of Baton Rouge Areas 

 

 

4. QUANTITATIVE ANALYSIS 
 

4.1 Histogram and Probability Functions 
For a M by N digital image, occurrence of the gray level 

is described as the co-occurrence matrix of relative 

frequencies. The occurrence probability function is then 

estimated from its histogram distribution.  

 

4.2 Discrete Entropy Analysis 
The discrete entropy is a measure of information content, 

which represents the average uncertainty of the 

information source. The discrete entropy is the 

summation of products of the probability of the outcome 

multiplied by the logarithm of inverse of probability of 

the outcome, taking into account of all possible outcomes 

{1, 2, …, n} as the gray level in the event {x1, x2, …, 

xn}, where p(i) is the probability at the gray level i, 

which contains all the histogram counts. The discrete 

entropy H(x) is formulated as (14) and all corresponding 

results are shown in Table 1. 
k k

2 2

i=1 i=1

1
H(x)= p(i)log = - p(i)log p(i)

p(i)
∑ ∑        (14) 

 

Table 1 Discrete Entropy of Images 

 

Discrete 

Entropy 

Image A 

(N.O.) 

Discrete 

Entropy 

Image B 

(B.T.R) 

Source 

Image 

6.5630 Source 

Image 

6.7279 

Denoised 

Image 

6.9670 Denoised 

Image 

7.2252 

Cluster 1 1.4650 Cluster 1 2.2084 

Cluster 2 3.1182 Cluster 2 3.1886 

Cluster 3 2.9009 Cluster 3 3.0486 

Cluster 4 0.5474 Cluster 4 2.0423 

 

 

4.3 Discrete Energy Analysis 

The discrete energy measure indicates how the gray level 

elements are distributed. Its formulation is shown in (15), 

where E(x) represents the discrete energy with 256 bins 

and p(i) refers to the probability distribution functions at 

different gray levels, which contains the histogram 

counts. For any constant value of the gray level, the 

energy measure can reach its maximum value of one. 

The lower energy corresponds to larger number of gray 

levels and the higher one corresponds to smaller gray 

level numbers. The discrete energy of the source, 

denoised and segmented images are shown in Table 2. 

 
k

2

i=1

E(x)= p(i)∑               (15) 

 

Table 2 Discrete Energy of Images 

 

Discrete 

Energy 

Image A 

(N.O.) 

Discrete 

Energy 

Image B 

(B.T.R) 

Source 

Image 

0.0122 Source 

Image 

0.0112 

Denoised 

Image 

0.0090 Denoised 

Image 

0.0077 

Cluster 1 0.6705 Cluster 1 0.4802 

Cluster 2 0.2684 Cluster 2 0.2609 

Cluster 3 0.2788 Cluster 3 0.2938 

Cluster 4 0.8965 Cluster 4 0.5411 

 

4.4 Relative Entropy Analysis 
Assuming that two discrete probability distributions of 

the digital images have the probability functions of p(i) 

and q(i). The relative entropy of p with respect to q is 

defined as the summation of all the possible states of the 

system, which is formulated as (16). The relative 

entropies of the source, denoised and segmented images 

are shown in Table 3.  
k

2

i=1

p(i)
d= p(i)log

q(i)
∑

             

(16)     

 

Table 3 Relative Entropy of Images 

 

Relative 

Entropy 

Source 

Image  

Denoised 

Image A 

Source 

Image 

Denoised 

Image B 

Cluster 1 0.0705 0.2944 0.0255 0.1938 

Cluster 2 0.0882 0.2835 0.0294 0.1994   

Cluster 3 0.0905 0.2846 0.0569 0.2665 

Cluster 4 0.0512 0.2707 0.0719 0.3043 

Denoised 

Image 
0.3167  0.3088  
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4.5 Mutual Information Analysis 

Another metric of the mutual information I(X; Y) should 

also be discussed, which is used to describe how much 

information one variable tells about the other variable. 

The relationship is formulated as (17). 

XY
XY 2

X,Y X Y

p (X, Y)
I(X;Y)= p (X, Y)log =H(X)-H(X |Y)

p (X)p (Y)
∑   (17) 

where H(X) and H(X|Y) are values of the entropy and 

conditional entropy; pXY is the joint probability density 

function; pX and pY are marginal probability density 

functions. It can be explained as information that Y can 

tell about X is the reduction in uncertainty of X due to 

the existence of Y. The mutual information also 

represents the relative entropy between the joint 

distribution and product distribution. Calculated mutual 

information outcomes among the source, denoised and 

segmented images are indicated in Table 4. 

 

Table 4 Mutual Information Between Images 

 

Mutual 

Information 

Source 

Image 

Denoised 

Image A 

Source 

Image 

Denoised 

Image B 

Cluster 1 5.0980 5.5020 4.5194 5.0167 

Cluster 2 3.4447 3.8487 3.5392 4.0365 

Cluster 3 3.6621 4.0661 3.6793 4.1765 

Cluster 4 6.0156 6.4196 4.6855 5.1828 

Denoised 

Image 
0.4040  0.4973  

 

From Table 1 and Table 2, the denoised images cover 

more useful information than source images and each 

individual image cluster covers partial information. From 

Table 1 to Table 4, the quantitative values between the 

segmented images and original images can be set as 

measures for target detection when more clusters will be 

generated. Each cluster will actually represent certain 

type of objects that need to be identified. This image 

processing integration approach has been successfully 

applied to spatial object recognition issues.  

 

5. CONCLUSIONS 

This article has presented the outcomes from integration 

of image processing technologies. Image denoising can 

be used to maintain the energy of the images and reduce 

the energy of noises. Being a nonlinear approach, 

wavelet denoising has advantages of dealing with highly 

nonlinear spatial images. Using a set of wavelet bases, 

the wavelet coefficients can be thresholded to reduce the 

influence from noises. Wavelet denoising has been used 

to remove noises without distorting important features of 

images. Image segmentation can be used to identify 

objects from images. It classifies each image pixel to a 

segment according to the similarity in a sense of a 

specific metric distance. To reduce blurring effects of the 

spatial images stem from atmospheric media, nonlinear 

region K-means segmentation has been presented for 

image segmentation, where the competitive learning rule 

is applied to update clustering centers with satisfactory 

results. To evaluate the roles of wavelet denoising and 

nonlinear segmentation approaches, quantitative metrics 

are proposed. Several information measures of the 

discrete energy, discrete entropy, relative entropy and 

mutual information are applied to indicate the effects of 

integration of two image processing approaches. These 

methodologies could be easily expanded to other image 

processing techniques for diverse types of potential 

practical implementations. 
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